•  
  •  
 

Authors

Jing Ni, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,Jilin University, Changchun 130012, P. R. China;
Zhao-Ping Shi, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;
Xian Wang, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;
Yi-Bo Wang, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;
Hong-Xiang Wu, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;
Chang-Peng Liu, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;Follow
Jun-Jie Ge, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;3. Dalian National Laboratory for Clean Energy,Chinese Academy of Sciences, Dalian 116023, China;Follow
Wei Xing, 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;Follow

Corresponding Author

Chang-Peng Liu(liuchp@ciac.ac.cn);
Jun-Jie Ge(gejj@ciac.ac.cn);
Wei Xing(xingwei@ciac.ac.cn)

Abstract

Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) is the key to implementing polymer electrolyte membrane water electrolyzer (PEMWE) for hydrogen production. To date, iridium (Ir) is the state-of-the-art OER catalyst, but still suffers from the insufficient activity and scarce earth abundance, which results in high cost both in stack and electricity. Design low-Ir catalysts with enhanced activity and stability that can match the requirements of high current and long-term operation in PEMWE is thus highly desired, which necessitate a deep understanding of acidic OER mechanisms, unique insights of material design strategies, and reliable performance evaluation norm, especially for durability. With these demand in mind, we in this review firstly performed a systematic summary on the currently recognized acidic OER mechanism on both activity expression (i.e. the adsorbate evolution mechanism, the lattice oxygen mediated mechanism and the multi-active center mechanism) and inactivation (i.e. active species dissolution, evolution of crystal phase and morphology, as well as catalyst shedding and active site blocking), which can provide guidance for material structural engineering towards higher performance in PEMWE devices. Subsequently, we critically reviewed several types of low-Ir OER catalysts recently reported, i.e. multimetallic alloy oxide, supported, spatially structured and single site catalysts, focusing on how the performance has been regulated and the underlying structure-performance relationship. Lastly, the commonly used indicators for catalyst stability evaluation, wide accepted deactivation characterization techniques and the lifetime probing methods mimicking the practical operation condition of PEMWE are introduced, hoping to provide a basis for catalyst screening. In the end, few suggestions on exploring future low-Ir OER catalysts that can be applied in the PEMWE system are proposed.

Graphical Abstract

Keywords

oxygen evolution reaction, polymer electrolyte membrane water electrolysis, low-iridium, catalytic mechanism on activity and stability, evaluation criteria for operational stability

Publication Date

2022-09-28

Online Available Date

2022-08-17

Revised Date

2022-07-21

Received Date

2022-07-08

References

[1] Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems[J]. Nat. Mater., 2020, 19(11): 1140-1150.
doi: 10.1038/s41563-020-0788-3 pmid: 33020614

[2] Zheng Y R, Vernieres J, Wang Z B, Zhang K, Hochfilzer D, Krempl K, Liao T W, Presel F, Altantzis T, Fatermans J, Scott S B, Secher N M, Moon C, Liu P, Bals S, Van Aert S, Cao A, Anand M, Norskov J K, Kibsgaard J, Chorkendorff I. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts[J]. Nat. Energy, 2022, 7(1): 55-64.
doi: 10.1038/s41560-021-00948-w URL

[3] Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
doi: 10.1126/science.aaf5050 URL

[4] Lin C, Li J L, Li X P, Yang S, Luo W, Zhang Y J, Kim S H, Kim D H, Shinde S S, Li Y F, Liu Z P, Jiang Z, Lee J H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat. Catal., 2021, 4(12): 1012-1023.
doi: 10.1038/s41929-021-00703-0 URL

[5] Shi Z P, Wang X, Ge J J, Liu C P, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nano-scale, 2020, 12(25): 13249-13275.

[6] Hegge F, Lombeck F, Cruz Ortiz E, Bohn L, von Holst M, Kroschel M, Hübner J, Breitwieser M, Strasser P, Vierrath S. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers[J]. ACS Appl. Energy Mater., 2020, 3(9): 8276-8284.
doi: 10.1021/acsaem.0c00735 URL

[7] Park S A, Kim K S, Kim Y T. Electrochemically activated iridium oxide black as promising electrocatalyst having high activity and stability for oxygen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1110-1115.
doi: 10.1021/acsenergylett.8b00368 URL

[8] Dickens C F, Nörskov J K. A Theoretical Investigation into the role of surface defects for oxygen evolution on RuO2[J]. J. Phys. Chem. C, 2017, 121(34): 18516-18524.
doi: 10.1021/acs.jpcc.7b03481 URL

[9] Rong X, Parolin J, Kolpak A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catalysis, 2016, 6(2): 1153-1158.
doi: 10.1021/acscatal.5b02432 URL

[10] Kasian O, Geiger S, Stock P, Polymeros G, Breitbach B, Savan A, Ludwig A, Cherevko S, Mayrhofer K J J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides[J]. J. Electrochem. Soc., 2016, 163(11): F3099-F3104.
doi: 10.1149/2.0131611jes URL

[11] Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability[J]. Cataly. Today, 2016, 262: 170-180.
doi: 10.1016/j.cattod.2015.08.014 URL

[12] Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kotz R, Schmidt T J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Sci. Rep., 2015, 5: 12167.
doi: 10.1038/srep12167 pmid: 26178185

[13] Cherevko S, Zeradjanin A R, Topalov A A, Kulyk N, Katsounaros I, Mayrhofer K J J. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
doi: 10.1002/cctc.201402194 URL

[14] Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
doi: 10.1021/jz501061n pmid: 26277818

[15] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL

[16] Reier T, Nong H N, Teschner D, Schlögl R, Strasser P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Adv. Energy Mater., 2017, 7(1): 1601275.
doi: 10.1002/aenm.201601275 URL

[17] Koper MTM. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
doi: 10.1039/c3sc50205h URL

[18] Koper M T M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis[J]. J. Electroanal. Chem., 2011, 660(2): 254-260.
doi: 10.1016/j.jelechem.2010.10.004 URL

[19] Rossmeisl J, Logadottir A, Nörskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184.
doi: 10.1016/j.chemphys.2005.05.038 URL

[20] Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761.
doi: 10.1002/cctc.201000126 URL

[21] Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nat. Catal., 2022, 5(2): 109-118.
doi: 10.1038/s41929-021-00732-9 URL

[22] Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt T J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catal. Sci. Technol., 2014, 4(11): 3800-3821.
doi: 10.1039/C4CY00669K URL

[23] Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
doi: 10.1038/ncomms11053 pmid: 27006166

[24] Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL

[25] Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191

[26] Song F, Busch M M, Lassalle-Kaiser B, Hsu C S, Petku-cheva E, Bensimon M, Chen H M, Corminboeuf C, Hu X. An unconventional iron nickel catalyst for the oxygen evolution reaction[J]. ACS Cent. Sci., 2019, 5(3): 558-568.
doi: 10.1021/acscentsci.9b00053 URL

[27] Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL

[28] Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191

[29] Koper M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
doi: 10.1039/c3sc50205h URL

[30] Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q, Li C, Han H, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angew. Chem.-Int. Edit., 2019, 58(15): 5054-5058.
doi: 10.1002/anie.201813361 URL

[31] Zhang R, Dubouis N, Ben Osman M, Yin W, Sougrati M T, Corte DAD, Giaume D, Grimaud A. A Dissolution/pre-cipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4571-4575.
doi: 10.1002/anie.201814075 URL

[32] Kasian O, Grote J P, Geiger S, Cherevko S, Mayrhofer K J J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angew. Chem. Int. Ed., 2018, 57(9): 2488-2491.
doi: 10.1002/anie.201709652 pmid: 29219237

[33] Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.
doi: 10.1038/s41929-018-0085-6 URL

[34] Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849.
doi: 10.1038/s41467-019-12886-z pmid: 31649237

[35] Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313.
doi: 10.1038/s41929-019-0246-2 URL

[36] Wen Y Z, Chen P N, Wang L, Li S Y, Wang Z Y, Abed J, Mao X N, Min Y M, Dinh C T, De Luna P, Huang R, Zhang L S, Wang L, Wang L P, Nielsen R J, Li H H, Zhuang T T, Ke C C, Voznyy O, Hu Y F, Li Y Y, Goddard W A, Zhang B, Peng H S, Sargent E H. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(17): 6482-6490.
doi: 10.1021/jacs.1c00384 URL

[37] Park J, Sa Y J, Baik H, Kwon T, Joo S H, Lee K. Iridium-based multimetallic nanoframe@nanoframe structure: an efficient and robust electrocatalyst toward oxygen evolution reaction[J]. ACS Nano, 2017, 11(6): 5500-5509.
doi: 10.1021/acsnano.7b00233 pmid: 28599106

[38] Zeng F, Mebrahtu C, Liao L, Beine A K, Palkovits R. Stability and deactivation of OER electrocatalysts: a review[J]. J. Energy Chem., 2022, 69: 301-329.
doi: 10.1016/j.jechem.2022.01.025 URL

[39] Martelli G N, Ornelas R, Faita G. Deactivation mechanisms of oxygen evolviong anodes at high current densities[J]. Electrochim. Acta, 1994, 39(11/12): 1151-1158.
doi: 10.1016/0013-4686(94)E0030-4 URL

[40] Edgington J, Schweitzer N, Alayoglu S, Seitz L C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid[J]. J. Am. Chem. Soc., 2021, 143(26): 9961-9971.
doi: 10.1021/jacs.1c04332 URL

[41] Hayashi T, Bonnet-Mercier N, Yamaguchi A, Suetsugu K, Nakamura R. Electrochemical characterization of ma-nganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers[J]. R. Soc. Open Sci., 2019, 6(5): 190122.
doi: 10.1098/rsos.190122 URL

[42] Kirshenbaum M J, Richter M H, Dasog M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst[J]. ChemCatChem, 2019, 11(16): 3877-3881.
doi: 10.1002/cctc.201801736

[43] Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015, 6: 6616.
doi: 10.1038/ncomms7616 pmid: 25776015

[44] Angulo A, van der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
doi: 10.1016/j.joule.2020.01.005 URL

[45] Alia S M, Shulda S, Ngo C, Pylypenko S, Pivovar B S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts[J]. ACS Catal., 2018, 8(3): 2111-2120.
doi: 10.1021/acscatal.7b03787 URL

[46] Sun W, Song Y, Gong X Q, Cao L M, Yang J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chem. Sci., 2015, 6(8): 4993-4999.
doi: 10.1039/C5SC01251A URL

[47] Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017, 29(47): 1703798.
doi: 10.1002/adma.201703798 URL

[48] Li N, Cai L, Wang C, Lin Y, Huang J Z, Sheng H Y, Pan H B, Zhang W, Ji Q Q, Duan H L, Hu W, Zhang W H, Hu F C, Tan H, Sun Z H, Song B, Jin S, Yan W S. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity[J]. J. Am. Chem. Soc., 2021, 143(43): 18001-18009.
doi: 10.1021/jacs.1c04087 URL

<

[49] Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.
doi: 10.1021/jacs.0c12740 pmid: 33656891

[50] Zhao F, Wen B, Niu W H, Chen Z, Yan C, Selloni A, Tully C G, Yang X F, Koel B E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification[J]. J. Am. Chem. Soc., 2021, 143(38): 15616-15623.
doi: 10.1021/jacs.1c03473 pmid: 34469132

[51] Wang Y B, Hou S, Ma R P, Jiang J D, Shi Z P, Liu C P, Ge J J, Xing W. Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution[J]. ACS Sustain. Chem. Eng., 2021, 9(32): 10710-10716.
doi: 10.1021/acssuschemeng.0c08887 URL

[52] Liu X H, Xi S B, Kim H, Kumar A, Lee J, Wang J, Tran N Q, Yang T, Shao X D, Liang M F, Kim M G, Lee H. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction[J]. Nat. Commun., 2021, 12(1): 5676.
doi: 10.1038/s41467-021-26025-0 pmid: 34584105

[53] Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.
doi: 10.1021/acsami.0c20791 URL

[54] Li G Q, Li K, Yang L, Chang J F, Ma R P, Wu Z J, Ge J J, Liu C P, Xing W. Boosted performance of Ir species by employing tin as the support toward oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38117-38124.
doi: 10.1021/acsami.8b14172 URL

[55] Sun W, Zhou Z H, Zaman W Q, Cao L M, Yang J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J]. ACS Appl. Mater. Interfaces, 2017, 9(48): 41855-41862.
doi: 10.1021/acsami.7b12775 URL

[56] Regmi Y N, Tzanetopoulos E, Zeng G S, Peng X, Kushner D I, Kistler T A, King L A, Danilovic N. Supported oxygen evolution catalysts by design: toward lower precious metal loading and improved conductivity in proton exchange membrane water electrolyzers[J]. ACS Catal., 2020, 10(21): 13125-13135.
doi: 10.1021/acscatal.0c03098 URL

[57] Oh H S, Nong H N, Reier T, Gliech M, Strasser P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers[J]. Chem. Sci., 2015, 6(6): 3321-3328.
doi: 10.1039/C5SC00518C URL

[58] Tackett B M, Sheng W C, Kattel S, Yao S Y, Yan B H, Kuttiyiel K A, Wu Q Y, Chen J G G. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores[J]. ACS Catal., 2018, 8(3): 2615-2621.
doi: 10.1021/acscatal.7b04410 URL

[59] Li G Q, Li S T, Xiao M L, Ge J J, Liu C P, Xing W. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure[J]. Nanoscale, 2017, 9(27): 9291-9298.
doi: 10.1039/C7NR02899G URL

[60] Lim J, Park D, Jeon S S, Roh C W, Choi J, Yoon D, Park M, Jung H, Lee H. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Adv. Funct. Mater., 2018, 28(4): 1704796.
doi: 10.1002/adfm.201704796 URL

[61] Jiang B, Guo Y N, Kim J, Whitten A E, Wood K, Kani K, Rowan A E, Henzie J, Yamauchi Y. Mesoporous metallic iridium nanosheets[J]. J. Am. Chem. Soc., 2018, 140(39): 12434-12441.
doi: 10.1021/jacs.8b05206 pmid: 30129750

[62] Dang Q, Lin H P, Fan Z L, Ma L, Shao Q, Ji Y J, Zheng F F, Geng S Z, Yang S Z, Kong N N, Zhu W X, Li Y Y, Liao F, Huang X Q, Shao M W. Iridium metallene oxide for acidic oxygen evolution catalysis[J]. Nat. Commun., 2021, 12(1): 6007.
doi: 10.1038/s41467-021-26336-2 pmid: 34650084

[63] Fan Z L, Ji Y J, Shao Q, Geng S Z, Zhu W X, Liu Y, Liao F, Hu Z W, Chang Y C, Pao C W, Li Y Y, Kang Z H, Shao M W. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide[J]. Joule, 2021, 5(12): 3221-3234.
doi: 10.1016/j.joule.2021.10.002 URL

[64] Shan J Q, Ye C, Chen S M, Sun T L, Jiao Y, Liu L M, Zhu C Z, Song L, Han Y, Jaroniec M, Zhu Y H, Zheng Y, Qiao S Z. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(13): 5201-5211.
doi: 10.1021/jacs.1c01525 URL

[65] Shi Z P, Wang Y, Li J, Wang X, Wang Y B, Li Y, Xu W L, Jiang Z, Liu C P, Xing W, Ge J J. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis[J]. Joule, 2021, 5(8): 2164-2176.
doi: 10.1016/j.joule.2021.05.018 URL

[66] Yin J, Jin J, Lu M, Huang B L, Zhang H, Peng Y, Xi P X, Yan C H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. J. Am. Chem. Soc., 2020, 142(43): 18378-18386.
doi: 10.1021/jacs.0c05050 URL

[67] Su H, Zhou W L, Zhou W, Li Y L, Zheng L R, Zhang H, Liu M H, Zhang X X, Sun X, Xu Y Z, Hu F C, Zhang J, Hu T D, Liu Q H, Wei S Q. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation[J]. Nat. Commun., 2021, 12(1): 6118.
doi: 10.1038/s41467-021-26416-3 URL

[68] Hao S Y, Sheng H Y, Liu M, Huang J Z, Zheng G K, Zhang F, Liu X N, Su Z W, Hu J J, Qian Y, Zhou L N, He Y, Song B, Lei L C, Zhang X W, Jin S. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers[J]. Nat. Nanotechnol., 2021, 16(12): 1371-1377.
doi: 10.1038/s41565-021-00986-1 URL

[69] Pi Y C, Shao Q, Wang P T, Guo J, Huang X Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimeta-llic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting[J]. Adv. Funct. Mater., 2017, 27(27): 1700886.
doi: 10.1002/adfm.201700886 URL

[70] Hao S Y, Wang Y H, Zheng G K, Qiu L S, Xu N, He Y, Lei L C, Zhang X W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media[J]. Appl. Catal. B, 2020, 266: 118643.
doi: 10.1016/j.apcatb.2020.118643 URL

[71] Jin Z Y, Lv J, Jia H L, Liu W H, Li H L, Chen Z H, Lin X, Xie G Q, Liu X J, Sun S H, Qiu H J. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments[J]. Small, 2019, 15(47): e1904180.

[72] Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9(1): 5236.
doi: 10.1038/s41467-018-07678-w pmid: 30531797

[73] Shang C Y, Cao C, Yu D Y, Yan Y, Lin Y T, Li H L, Zheng T T, Yan X P, Yu W C, Zhou S M, Zeng J. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation[J]. Adv. Mater., 2019, 31(6): e1805104.

[74] Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
doi: 10.1021/acs.chemmater.0c00081 URL

[75] Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong H N, Schlogl R, Mayrhofer K J J, Strasser P. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER)[J]. J. Am. Chem. Soc., 2015, 137(40): 13031-13040.
doi: 10.1021/jacs.5b07788 pmid: 26355767

[76] Nong H N, Reier T, Oh H S, Gliech M, Paciok P, Vu T H T, Teschner D, Heggen M, Petkov V, Schlögl R, Jones T, Strasser P. A unique oxygen ligand environment fac

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.