•  
  •  
 

Corresponding Author

Li-Gang Feng(ligang.feng@yzu.edu.cn;fenglg11@gmail.com)

Abstract

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, a mini review is proposed for the surface structure engineering of FeNi-based pre-catalyst for OER. The reaction mechanism of alkaline OER is firstly presented, and then the strategies in surface engineering of FeNi-based pre-catalyst for improving OER performance are discussed in terms of heteroatom doping, surface composition modification, selective structural transformation, surface chemical state regulation, heterostructure construction, and support effect. It can be concluded that the surface structure, morphology, and the chemical states of Fe/Ni in the system will significantly influence the final catalytic performance, though all of them were transferred into the active phase state of high valence state metal species. In other words, the catalytic performance of FeNi-based catalysts is also determined by the property of their pre-catalysts. To carefully design and maximize the synergistic effect of Fe and Ni is necessary to boost the catalytic performance. We hope this topic will be a good and timely complement to the study of FeNi-based catalysts for OER in the water-splitting technique.

Graphical Abstract

Keywords

FeNi-based catalyst, surface structure engineering, oxygen evolution reaction, water splitting reaction, catalysis

Publication Date

2022-09-28

Online Available Date

2022-04-25

Revised Date

2022-04-11

Received Date

2022-04-06

References

[1] Liu P F, Yin H J, Fu H Q, Zu M Y, Yang H G, Zhao H J. Activation strategies of water-splitting electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(20): 10096-10129.
doi: 10.1039/D0TA01680B URL

[2] Yuan N N, Jiang Q Q, Li J, Tang J G. A review on non-no-ble metal based electrocatalysis for the oxygen evolution reaction[J]. Arab. J. Chem., 2020, 13(2): 4294-4309.
doi: 10.1016/j.arabjc.2019.08.006 URL

[3] Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.
doi: 10.1002/adma.201602270 URL

[4] Wu Y J, Yang J, Tu T X, Li W Q, Zhang P F, Zhou Y, Li J F, Li J T, Sun S G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst[J]. Angew. Chem. Int. Edit., 2021, 60(51): 26829-26836.
doi: 10.1002/anie.202112447 URL

[5] Fabbri E, Schmidt T J. Oxygen evolution reaction-the enigma in water electrolysis[J]. ACS Catal., 2018, 8(10): 9765-9774.
doi: 10.1021/acscatal.8b02712 URL

[6] Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chem. Rev., 2010, 110(11): 6474-6502.
doi: 10.1021/cr100246c pmid: 21062098

[7] Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Norskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89.
doi: 10.1016/j.jelechem.2006.11.008 URL

[8] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL

[9] Xu Q C, Zhang J H, Zhang H X, Zhang L Y, Chen L, Hu Y J, Jiang H, Li C Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting[J]. Energ. Environ. Sci., 2021, 14(10): 5228-5259.
doi: 10.1039/D1EE02105B URL

[10] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
doi: 10.1039/C6CS00328A URL

[11] Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites[J]. J. Am. Chem. Soc., 2016, 138(1): 313-318.
doi: 10.1021/jacs.5b10977 URL

[12] Li N, Bediako D K, Hadt R G, Hayes D, Kempa T J, von Cube F, Bell D C, Chen L X, Nocera D G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films[J]. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(7): 1486-1491.
doi: 10.1073/pnas.1620787114 URL

[13] Zhong L, Bao Y F, Yu X, Feng L G. An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction[J]. Chem. Commun., 2019, 55(63): 9347-9350.
doi: 10.1039/C9CC04429A URL

[14] Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879.
doi: 10.1021/jacs.8b00752 pmid: 29518310

[15] Li Y F, Selloni A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx[J]. ACS Catal., 2014, 4(4): 1148-1153.
doi: 10.1021/cs401245q URL

[16] Li D Z, Liu H, Feng L G. A review on advanced FeNi-based catalysts for water splitting reaction[J]. Energ. Fuel., 2020, 34(11): 13491-13522.
doi: 10.1021/acs.energyfuels.0c03084 URL

[17] Hou G Y, Wu J, Li T, Lin J, Wang B F, Peng L, Yan T, Hao L S, Qiao L X, Wu X F. Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: An effective electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrogen. Energ., 2022, 47(25): 12487-12499.
doi: 10.1016/j.ijhydene.2022.02.004 URL

[18] Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting[J]. J. Power Sources, 2017, 347: 193-200.
doi: 10.1016/j.jpowsour.2017.02.062 URL

[19] Gu Y, Chen S, Ren J, Jia Y A, Chen C M, Komarneni S, Yang D J, Yao X D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(1): 245-253.
doi: 10.1021/acsnano.7b05971 URL

[20] Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries[J]. Chem. Eng. J., 2020, 389: 124408.
doi: 10.1016/j.cej.2020.124408 URL

[21] Gong M, Dai H J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res., 2015, 8(1): 23-39.
doi: 10.1007/s12274-014-0591-z URL

[22] Mohammed-Ibrahim J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction[J]. J. Power. Sources, 2020, 448: 227375.
doi: 10.1016/j.jpowsour.2019.227375 URL

[23] Kang Q L, Lai D W, Tang W Y, Lu Q Y, Gao F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction[J]. Chem. Sci., 2021, 12(11): 3818-3835.
doi: 10.1039/d0sc06716d pmid: 34163652

[24] Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A. NiMoO4@Co3O4 core-shell nanorods: in situ catalyst reconstruction toward high efficiency oxygen evolution reaction[J]. Adv. Energy Mater., 2021, 11(32): 2101324.
doi: 10.1002/aenm.202101324 URL

[25] Yan Y, Xia B Y, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. J. Mater. Chem. A, 2016, 4(45): 17587-17603.
doi: 10.1039/C6TA08075H URL

[26] Dionigi F, Zeng Z H, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D X, Bergmann A, Drnec J, de Araujo J F, Gliech M, Teschner D, Zhu J, Li W X, Greeley J, Cuenya B R, Strasser P. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution[J]. Nat. Commun., 2020, 11(1): 2522.
doi: 10.1038/s41467-020-16237-1 pmid: 32433529

[27] Smith R D L, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P, Mohammadi M R, Gonzalez-Flores D, Dau H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides[J]. Nat. Commun., 2017, 8: 2022.
doi: 10.1038/s41467-017-01949-8 pmid: 29222428

[28] Jörissen L. Bifunctional oxygen/air electrodes[J]. J. Power. Sources, 2006, 155(1): 23-32.
doi: 10.1016/j.jpowsour.2005.07.038 URL

[29] Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
pmid: 27797490

[30] Plevová M, Hnát J, Bouzek K. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review[J]. J. Power. Sources, 2021, 507: 230072.
doi: 10.1016/j.jpowsour.2021.230072 URL

[31] Xue Z, Zhang X Y, Qin J Q, Liu R P. Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: A DFT study[J]. J. Mater. Chem. A, 2019, 7(40): 23091-23097.
doi: 10.1039/C9TA06686A URL

[32] Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Edit., 2019, 58(5): 1252-1265.
doi: 10.1002/anie.201802923 URL

[33] Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue H G S, Ogasawara H, Crumlin E J, Liu Z, Bell A T, Nilsson A, Friebel D. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction[J]. J. Phys. Chem. C, 2016, 120(4): 2247-2253.
doi: 10.1021/acs.jpcc.5b10931 URL

[34] Qiu Z, Ma Y, Edvinsson T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting[J]. Nano Energy, 2019, 66: 104118.
doi: 10.1016/j.nanoen.2019.104118 URL

[35] Wang D N, Zhou J G, Hu Y F, Yang J L, Han N, Li Y G, Sham T K. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation[J]. J. Phys. Chem. C, 2015, 119(34): 19573-19583.
doi: 10.1021/acs.jpcc.5b02685 URL

[36] Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B, Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mössbauer spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(48): 15090-15093.
doi: 10.1021/jacs.5b10699 URL

[37] Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753.
doi: 10.1021/ja502379c pmid: 24779732

[38] Zhang G W, Zeng J R, Yin J, Zuo C Y, Wen P, Chen H T, Qiu Y J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction[J]. Appl. Catal. B., 2021, 286: 119902.
doi: 10.1016/j.apcatb.2021.119902 URL

[39] Tedstone A A, Lewis D J, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides[J]. Chem. Mater., 2016, 28(7): 1965-1974.
doi: 10.1021/acs.chemmater.6b00430 URL

[40] Saleh N B, Milliron D J, Aich N, Katz L E, Liljestrand H M, Kirisits M J. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species[J]. Sci. Total Environ., 2016, 568: 926-932.
doi: 10.1016/j.scitotenv.2016.06.145 URL

[41] Wang J, Gao Y, You T L, Ciucci F. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting[J]. J. Power. Sources, 2018, 401: 312-321.
doi: 10.1016/j.jpowsour.2018.09.011 URL

[42] Yang Y S, Zhuang L Z, Lin R J, Li M R, Xu X Y, Rufford T E, Zhu Z H. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation[J]. J. Power. Sources, 2017, 349: 68-74.
doi: 10.1016/j.jpowsour.2017.03.028 URL

[43] Liu J L, Zhu D D, Ling T, Vasileff A, Qiao S Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017, 40: 264-273.
doi: 10.1016/j.nanoen.2017.08.031 URL

[44] Xuan C J, Wang J, Xia W W, Zhu J, Peng Z K, Xia K D, Xiao W P, Xin H L L, Wang D L. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(16): 7062-7069.
doi: 10.1039/C8TA00410B URL

[45] Liu Z, Yu X, Yu H G, Xue H G, Feng L G. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction[J]. ChemSusChem, 2018, 11(16): 2703-2709.
doi: 10.1002/cssc.201801250 URL

[46] Yang Y, Su J W, Jiang P, Chen J T, Hu L, Chen Q W. MOFs-derived N-doped carbon-encapsulated metal/alloy electrocatalysts to tune the electronic structure and reactivity of carbon active sites[J]. Chinese J. Chem., 2021, 39(9): 2626-2637.
doi: 10.1002/cjoc.202100207 URL

[47] Wu H H, Wang J, Wang G X, Cai F, Ye Y F, Jiang Q K, Sun S C, Miao S, Bao X H. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer[J]. Nano Energy, 2016, 30: 801-809.
doi: 10.1016/j.nanoen.2016.09.016 URL

[48] Du L, Luo L L, Feng Z X, Engelhard M, Xie X H, Han B H, Sun J M, Zhang J H, Yin G P, Wang C M, Wang Y, Shao Y Y. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst[J]. Nano Energy, 2017, 39: 245-252.
doi: 10.1016/j.nanoen.2017.07.006 URL

[49] Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nat. Commun., 2013, 4(1): 2390.
doi: 10.1038/ncomms3390 URL

[50] Cui X J, Ren P J, Deng D H, Deng J, Bao X H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energ. Environ. Sci., 2016, 9(1): 123-129.
doi: 10.1039/C5EE03316K URL

[51] Lyons M E G, Doyle R L, Fernandez D, Godwin I J, Browne M P, Rovetta A. The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: A mini review[J]. Electrochem. Commun., 2014, 45: 56-59.
doi: 10.1016/j.elecom.2014.04.019 URL

[52] Liu Z, Yu H G, Dong B X, Yu X, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core-shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst[J]. Nano-scale, 2018, 10(35): 16911-16918.[53] Joo J, Kim T, Lee J, Choi S I, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv. Mater., 2019, 31(14): 1806682.
doi: 10.1002/adma.201806682 URL

[54] Burke M S, Enman L J, Batchellor A S, Zou S H, Boettch-er S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
doi: 10.1021/acs.chemmater.5b03148 URL

[55] Manso R H, Acharya P, Deng S Q, Crane C C, Reinhart B, Lee S, Tong X, Nykypanchuk D, Zhu J, Zhu Y M, Greenlee L F, Chen J Y. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction[J]. Nanoscale, 2019, 11(17): 8170-8184.
doi: 10.1039/c8nr10138h pmid: 30775739

[56] Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles[J]. Energ. Environ. Sci., 2015, 8(8): 2347-2351.
doi: 10.1039/C5EE01155H URL

[57] Liu Z, Tang B, Gu X C, Liu H, Feng L G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395: 125170.
doi: 10.1016/j.cej.2020.125170 URL

[58] Liu Z, Liu D Y, Zhao L Y, Tian J Q, Yang J, Feng L G. Efficient overall water splitting catalyzed by robust FeNi3N nanoparticles with hollow interiors[J]. J. Mater. Chem. A, 2021, 9(12): 7750-7758.
doi: 10.1039/D1TA01014J URL

[59] Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation[J]. Nano Energy, 2018, 47: 275-284.
doi: 10.1016/j.nanoen.2018.03.010 URL

[60] Liu L N, Yan F, Li K Y, Zhu C L, Xie Y, Zhang X T, Chen Y J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts[J]. J. Mater. Chem. A, 2019, 7(3): 1083-1091.
doi: 10.1039/C8TA10083G URL

[61] Wang H, Li J M, Li K, Lin Y P, Chen J M, Gao L J, Nicolosi V, Xiao X, Lee J M. Transition metal nitrides for electrochemical energy applications[J]. Chem. Soc. Rev., 2021, 50(2): 1354-1390.
doi: 10.1039/d0cs00415d pmid: 33295369

[62] Chen Y K, Yu J Y, Jia J, Liu F, Zhang Y W, Xiong G W, Zhang R T, Yang R Q, Sun D H, Liu H, Zhou W J. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting[J]. Appl. Catal. B., 2020, 272: 118956.
doi: 10.1016/j.apcatb.2020.118956 URL

[63] Li D, Xing Y Y, Yang R, Wen T, Jiang D L, Shi W D, Yuan S Q. Holey cobalt-iron nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2020, 12(26): 29253-29263.[64] Kwag S H, Lee Y S, Lee J, Jeong D I, Kwon S B, Yoo J H, Woo S, Lim B S, Park W K, Kim M J, Kim J H, Lim B, Kang B K, Yang W S, Yoon D H. Design of 2D nanocrystalline Fe2Ni2N coated onto graphene nanohybrid sheets for efficient electrocatalytic oxygen evolution[J]. ACS Appl. Energ. Mater., 2019, 2(12): 8502-8510.
doi: 10.1021/acsaem.9b01434 URL

[65] Chen Q, Wang R, Yu M H, Zeng Y X, Lu F Q, Kuang X J, Lu X H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting[J]. Electrochim. Acta, 2017, 247: 666-673.
doi: 10.1016/j.electacta.2017.07.025 URL

[66] Kumar Y, Kibena-Põldsepp E, Kozlova J, Rähn M, Tre-shchalov A, Kikas A, Kisand V, Aruväli J, Tamm A, Douglin J C, Folkman S J, Gelmetti I, Garcés-Pineda F A, Galán-Mascarós J R, Dekel D R, Tammeveski K. Bifunctional oxygen electrocatalysis on mixed metal phthalocyanine-modified carbon nanotubes prepared via pyrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(35): 41507-41516.
doi: 10.1021/acsami.1c06737 URL

[67] Yan F, Wang Y, Li K Y, Zhu C L, Gao P, Li C Y, Zhang X T, Chen Y J. Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities[J]. Chem. Eur. J., 2017, 23(42): 10187-10194.
doi: 10.1002/chem.201701662 URL

[68] Lu T, Dong S M, Zhang C J, Zhang L X, Cui G L. Fabrication of transition metal selenides and their applications in energy storage[J]. Coordin. Chem. Rev., 2017, 332: 75-99.
doi: 10.1016/j.ccr.2016.11.005 URL

[69] Li M, Liu H, Feng L G. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review[J]. Electrochem. Commun., 2021, 122: 106901.
doi: 10.1016/j.elecom.2020.106901 URL

[70] Zha M, Pei C G, Wang Q, Hu G Z, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid[J]. J. Energy Chem., 2020, 47: 166-171.
doi: 10.1016/j.jechem.2019.12.008 URL

[71] Pei C G, Gu Y, Liu Z, Yu X, Feng L G. Fluoridated iron-nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction[J]. ChemSusChem, 2019, 12(16): 3849-3855.
doi: 10.1002/cssc.201901153 pmid: 31225718

[72] Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(36): 11286-11292.
doi: 10.1021/jacs.8b05294 pmid: 30111100

[73] Liu H, Zha M, Liu Z, Tian J Q, Hu G Z, Feng L G. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination[J]. Chem. Commun., 2020, 56(57): 7889-7892.
doi: 10.1039/D0CC03422C URL

[74] Gu X C, Liu Z, Li M, Tian J Q, Feng L G. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction[J]. Appl. Catal. B., 2021, 297: 120462.
doi: 10.1016/j.apcatb.2021.120462 URL

[75] Trzešniewski B J, Diaz-Morales O, Vermaas D A, Longo A, Bras W, Koper M T M, Smith W A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity[J]. J. Am. Chem. Soc., 2015, 137(48): 15112-15121.
doi: 10.1021/jacs.5b06814 URL

[76] Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat. Commun., 2019, 10(1): 5106.
doi: 10.1038/s41467-019-13092-7 pmid: 31704926[77] Zhang G W, Wang B, Li L, Yang S, Liu J M, Yang S C. Tailoring the electronic structure by constructing the heterointerface of RuO2-NiO for overall water splitting with ultralow overpotential and extra-long lifetime[J]. J. Mater. Chem. A, 2020, 8(36): 18945-18954.
doi: 10.1039/D0TA06565J URL

[78] Pan S Y, Ma S X, Chang C F, Long X, Qu K G, Yang Z H. Activation of rhodium selenides for boosted hydrogen evolut

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.