Abstract
Due to its merits of high brightness and high intensity, high level of polarization and wide tunability in energy, etc., synchrotron radiation technique provides an unique platform for analysis of the relationship among composition–structure–performance of materials for lithium ion batteries, especially for in-situ, real time dynamic investigation of the electrochemical reaction mechanism, aging process and failure mechanism during charge-discharge cycling. In this paper, we review the latest developments in application of synchrotron based electrochemical in-situ experimental methods to studies of lithium ion batteries. The paper mainly focuses on the application of electrochemical in-siu XRD and XAFS techniques to the investigations of material structure evolution, charge compensation mechanism and reaction kinetics of batteries during charge-discharge cycling.
Graphical Abstract
Keywords
synchrotron, electrochemical in-situ methods, lithium ion batteries, X-ray diffraction, X-ray absorption fine structure
Publication Date
2013-12-28
Online Available Date
2013-08-15
Revised Date
2013-08-09
Received Date
2013-06-21
Recommended Citation
Zheng-liang GONG, Wei ZHANG, Dong-ping LV, Xiao-gang HAO, Wen WEN, Zheng JIANG, Yong YANG.
Application of Synchrotron Radiation Based Electrochemical In-Situ Techniques to Study of Electrode Materials for Lithium-Ion Batteries[J]. Journal of Electrochemistry,
2013
,
19(6): 512-522.
DOI: 10.13208/j.electrochem.130361
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss6/3
References
[1] McBreen J. The application of synchrotron techniques to the study of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2009, 13(7): 1051-1061.
[2] Deb A, Cairns E J. In situ X-ray absorption spectroscopy - A probe of cathode materials for Li-ion cells[J]. Fluid Phase Equilibria, 2006, 241(1/2): 4-19.
[3] Nam K W, Bak S M, Hu E Y, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 1047-1063.
[4] Bak S M, Nam K W, Chang W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351.
[5] Wang X J, Chen H Y, Yu X Q, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chemical Communications, 2011, 47(25): 7170-7172.
[6] Palacin M R, Le Cras F, Seguin L, et al. In situ structural study of 4V-range lithium extraction insertion in fluorine-substituted LiMn2O4[J]. Journal of Solid State Chemistry, 1999, 144(2): 361-371.
[7] Balasubramanian M, Sun X, Yang X Q, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1/2): 1-8.
[8] Novak P, Goers D, Hardwick L, et al. Advanced in situ characterization methods applied to carbonaceous materials[J]. Journal of Power Sources, 2005, 146(1/2): 15-20.
[9] Baehtz C, Buhrmester T, Bramnik N N, et al. Design and performance of an electrochemical in-situ cell for high resolution full-pattern X-ray powder diffraction[J]. Solid State Ionics, 2005, 176(17/18): 1647-1652.
[10] Liu R S, Wang C Y, Drozd V A, et al. A novel anode material LiVMoO6 for rechargeable lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2005, 8(12): A650-A653.
[11] Hirayama M, Sonoyama N, Ito M, et al. Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode[J]. Journal of The Electrochemical Society, 2007, 154(11): A1065-A1072.
[12] Renner F U, Kageyama H, Siroma Z, et al. Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction[J]. Electrochimica Acta, 2008, 53(21): 6064-6069.
[13] Borkiewicz O J, Shyam B, Wiaderek K M, et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements[J]. Journal of Applied Crystallography, 2012, 45: 1261-1269.
[14] Amatucci G G, Tarascon J M, Klein L C. CoO2, the end member of the LixCoO2 solid solution[J]. Journal of The Electrochemical Society, 1996, 143(3): 1114-1123.
[15] Tarascon J M, Vaughan G, Chabre Y, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J]. Journal of Solid State Chemistry, 1999, 147(1): 410-420.
[16] Yang X Q, Sun X, McBreen J. New phases and phase transitions observed in Li1-xCoO2 during charge: In situ synchrotron X-ray diffraction studies[J]. Electrochemistry Communications, 2000, 2(2): 100-103.
[17] Albertini V R, Perfetti P, Ronci F, et al. In situ studies of electrodic materials in Li-ion cells upon cycling performed by very-high-energy X-ray diffraction[J]. Applied Physics Letters, 2001, 79(1): 27-29.
[18] Sun X, Yang X Q, McBreen J, et al. New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials[J]. Journal of Power Sources, 2001, 97-98(S1): 274-276.
[19] Gross T, Buhrmester T, Bramnik K G, et al. Structure-intercalation relationships in LiNiyCo1-yO2[J]. Solid State Ionics, 2005, 176(13/14): 1193-1199.
[20] Liao P Y, Duh J G, Sheu H S. In situ synchrotron X-ray studies of LiNi1-x-yCoyMnxO2 cathode materials[J]. Electrochemical and Solid State Letters, 2007, 10(4): A88-A92.
[21] Cook J B, Kim C, Xu L P, et al. The effect of Al substitution on the chemical and electrochemical phase stability of orthorhombic LiMnO2[J]. Journal of The Electrochemical Society, 2013, 160(1): A46-A52.
[22] Yoon W S, Chung K Y, McBreen J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD[J]. Electrochemistry Communications, 2006, 8(8): 1257-1262.
[23] Yoon W S, Nam K W, Jang D, et al. The kinetic effect on structural behavior of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique[J]. Electrochemistry Communications, 2012, 15(1): 74-77.
[24] Chung K Y, Yoon W S, McBreen J, et al. In situ X-ray diffraction studies on the mechanism of capacity retention improvement by coating at the surface of LiCoO2[J]. Journal of Power Sources, 2007, 174(2): 619-623.
[25] Chung K Y, Yoon W S, Lee H S, et al. In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries[J]. Journal of Power Sources, 2006, 163(1): 185-190.
[26] Liu L J, Chen L Q, Huang X J, et al. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material[J]. Journal of The Electrochemical Society, 2004, 151(9): A1344-A1351.
[27] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/LiNixLi1/3-2x/3Mn2/3-x/3O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of The Electrochemical Society, 2002, 149(7): A815-A822.
[28] Mukerjee S, Thurston T R, Jisrawi N M, et al. Structural evolution of LixMn2O4 in lithium-ion battery cells measured in situ using synchrotron X-ray diffraction techniques[J]. Journal of The Electrochemical Society, 1998, 145(2): 466-472.
[29] Thurston T R, Jisrawi N M, Mukerjee S, et al. Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells[J]. Applied Physics Letters, 1996, 69(2): 194-196.
[30] Palacin M R, Chabre Y, Dupont L, et al. On the origin of the 3.3 and 4.5 V steps observed in LiMn2O4-based spinels[J]. Journal of The Electrochemical Society, 2000, 147(3): 845-853.
[31] Chung K Y, Lee H S, Yoon W S, et al. Studies of LiMn2O4 capacity fading at elevated temperature using in situ synchrotron X-ray diffraction[J]. Journal of The Electrochemical Society, 2006, 153(4): A774-A780.
[32] Mukerjee S, Yang X Q, Sun X, et al. In Solid State Ionics V[M]. Nazri, G. A., Julien, C., Rougier, A., Eds., Materials Research Society: Warrendale, 1999, Vol. 548, p 149-160.
[33] Ein-Eli Y, Urian R C, Wen W, et al. Low temperature performance of copper/nickel modified LiMn2O4 spinels[J]. Electrochimica Acta, 2005, 50(9): 1931-1937.
[34] Wen W, Kumarasamy B, Mukerjee S, et al. Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5-xMn1.5+xO4 (0 ≤ x ≤ 0.5) cathode materials - In situ XRD and XANES spectroscopy studies[J]. Journal of The Electrochemical Society, 2005, 152(9): A1902-A1911.
[35] Mukerjee S, Yang X Q, Sun X, et al. In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries[J]. Electrochimica Acta, 2004, 49(20): 3373-3382.
[36] Bhaskar A, Bramnik N N, Trots D M, et al. In situ synchrotron diffraction study of charge-discharge mechanism of sol gel synthesized LiM0.5Mn1.5O4 (M = Fe, Co)[J]. Journal of Power Sources, 2012, 217: 464-469.
[37] Shin H C, Chung K Y, Min W S, et al. Asymmetry between charge and discharge during high rate cycling in LiFePO4 - In situ X-ray diffraction study[J]. Electrochemistry Communications, 2008, 10(4): 536-540.
[38] Shin H C, Bin Park S, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling[J]. Electrochimica Acta, 2008, 53(27): 7946-7951.
[39] Shin H C, Nam K W, Chang W Y, et al. Comparative studies on C-coated and uncoated LiFePO4 cycling at various rates and temperatures using synchrotron based in situ X-ray diffraction[J]. Electrochimica Acta, 2011, 56(3): 1182-1189.
[40] Nam K W, Wang X J, Yoon W S, et al. In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916.
[41] Bramnik N N, Nikolowski K, Baehtz C, et al. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4[J]. Chemistry of Materials, 2007, 19(4): 908-915.
[42] Bramnik N N, Bramnik K G, Baehtz C, et al. Study of the effect of different synthesis routes on Li extraction-insertion from LiCoPO4[J]. Journal of Power Sources, 2005, 145(1): 74-81.
[43] Bramnik N N, Trots D M, Hofmann H J, et al. Mixed LiCo0.6M0.4PO4 (M = Mn, Fe, Ni) phosphates: Cycling mechanism and thermal stability[J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3271-3277.
[44] Hao X G(郝小罡), Liu Z G(刘子庚), Gong Z L(龚正良), et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica(中国科学:化学), 2012, 42(1): 38-46.
[45] Lv D, Bai J, Zhang P, et al. Understanding the High Capacity of Li2FeSiO4: In situ XRD/XANES study combined with first-principles calculations[J]. Chemistry of Materials, 2013, 25(10): 2014-2020.
[46] D'Arienzo M, Ruffo R, Scotti R, et al. Layered Na0.71CoO2: A powerful candidate for viable and high performance Na-batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(17): 5945-5952.
[47] Misra S, Liu N, Nelson J, et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes[J]. Acs Nano, 2012, 6(6): 5465-5473.
[48] Yoon W S, Balasubramanian M, Chung K Y, et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy[J]. Journal of the American Chemical Society, 2005, 127(49): 17479-17487.
[49] Liao P Y, Duh J G, Lee J F. Valence change and local structure during cycling of layer-structured cathode materials[J]. Journal Of Power Sources, 2009, 189(1): 9-15.
[50] Liao P Y, Duh J G, Lee J F, et al. Structural investigation of Li1-xNi0.5Co0.25Mn0.25O2 by in situ XAS and XRD measurements[J]. Electrochimica Acta, 2007, 53(4): 1850-1857.
[51] Ito A, Sato Y, Sanada T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material LiNi0.17Li0.2Co0.07Mn0.56O2[J]. Journal of Power Sources, 2011, 196(16): 6828-6834.
[52] Haas O, Deb A, Cairns E J, et al. Synchrotron X-ray absorption study of LiFePO4 electrodes[J]. Journal of The Electrochemical Society, 2005, 152(1): A191-A196.
[53] Chen Y C, Chen J M, Hsu C H, et al. In-situ synchrotron X-ray absorption studies of LiMn0.25Fe0.75PO4 as a cathode material for lithium ion batteries[J]. Solid State Ionics, 2009, 180(20-22): 1215-1219.
[54] Leriche J B, Hamelet S, Shu J, et al. An electrochemical cell for operando study of lithium batteries using synchrotron radiation[J]. Journalof The Electrochemical Society, 2010, 157(5): A606-A610.
[55] Wang X J, Jaye C, Nam K W, et al. Investigation of the structural changes in Li1-xFePO4 upon charging by synchrotron radiation techniques[J]. Journal of Materials Chemistry, 2011, 21(30): 11406-11411.
[56] Ouvrard G, Zerrouki M, Soudan P, et al. Heterogeneous behaviour of the lithium battery composite electrode LiFePO4[J]. Journal of Power Sources, 2013, 229: 16-21.
[57] Yu X Q, Wang Q, Zhou Y N, et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy[J]. Chemical Communications, 2012, 48(94): 11537-11539.
[58] Dominko R, Arcon I, Kodre A, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1): 51-58.
[59] Lv D P, Wen W, Huang X K, et al. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity[J]. Journal of Materials Chemistry, 2011, 21(26): 9506-9512.
[60] Kokalj A, Dominko R, Mali G, et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4[J]. Chemistry Of Materials, 2007, 19(15): 3633-3640.
[61] Lowe M A, Gao J, Abruna H D. In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(6): 2094-2103.
[62] Zhang W, Duchesne P N, Gong Z, et al. In situ electrochemical XAFS studies on an iron fluoride high capacity cathode material for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2013, 117(22): 11498-11505
[63] Hirayama M, Sonoyama N, Abe T, et al. Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry - A new experimental technique for LiCoO2 model electrode[J]. Journal Of Power Sources, 2007, 168(2): 493-500.
[64] Hirayama M, Sakamoto K, Hiraide T, et al. Characterization of electrode/electrolyte interface using in situ X-ray reflectometry and LiNi0.8Co0.2O2 epitaxial film electrode synthesized by pulsed laser deposition method[J]. Electrochimica Acta, 2007, 53(2): 871-881.
[65] Robert R, Zeng D L, Lanzirotti A, et al. Scanning X-ray fluorescence imaging study of lithium insertion into copper based oxysulfides for Li-ion batteries[J]. Chemistry of Materials, 2012, 24(14): 2684-2691.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons