•  
  •  
 

Corresponding Author

Zheng-gen ZHA(zwang3@ustc.edu.cn);
Zhi-yong WANG(zgzha@ustc.edu.cn)

Abstract

Recently, organic electrochemical synthesis has emerged as the most important and attractive method to construct carbon-carbon bond and carbon-heteroatom bonds in organic synthetic chemistry. This review mainly summarizes the electrochemical syntheses at present, especially focused on the recent progresses in our research group using an iodine radical as a mediator to promote α-C?H bond functionalization. The organic electrosynthesis provides an alternative approach and a new research direction in the development of green organic synthesis.

Graphical Abstract

Keywords

organic electrosynthesis, iodine radical, C—H functionalization, green synthesis

Publication Date

2017-06-29

Online Available Date

2017-02-15

Revised Date

2017-02-13

Received Date

2016-11-16

References

[1]马淳安, 有机电化学合成导论[M], 2003, 3-5.

[2] Grimshaw J, Electrochemical reactions and mechanisms in organic chemistry[M]. Elsevier, Amsterdam 2000.

[3] Xu H-C, Moeller, K D. Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group [J]. Journal of the American Chemical Society, 2008, 130(41): 13542-13543.

[4] Hou Z-W, Mao Z-Y, Zhao H-B, et al. Electrochemical C?H/N?H functionalization for the synthesis of highly functionalized (Aza)indoles[J]. Angewandte Chemie International Edition, 2016, 55(1): 1-6.

[5] Xiong P, Xu F, Qian X-Y, et al. Copper-catalyzed intramolecular oxidative amination of unactivated internal alkenes [J]. Chemistry - A European Journal, 2016, 22(13): 4379-4383.

[6] Li S-Q, Xiong P, Zhu L, et al. A general CuCl2-Promoted alkene aminochlorination reaction[J].European Journal of Organic Chemistry, 2016, 20: 3449-3455.

[7] Zhao H-B, Hou Z-W, Liu Z-J, et al. Amidinyl radical formation through anodic N?H bond cleavage and its application in aromatic C?H bond functionalization[J]. Angewandte Chemie International Edition, 2017, 56(2): 587-590.

[8] Kirste A, Schnakenburg G, Stecker F, et al. Anodic phenol–arene cross-coupling reaction on boron-doped diamond electrodes[J]. Angewandte Chemie International Edition, 2010, 49(5): 971-975.

[9] Mu?ller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886.

[10] Tajima T, Nakajima A, FuchigamiT, Electrolytic partial fluorination of organic compounds. 83. anodic fluorination of N-substituted pyrroles and its synthetic applications to gem-difluorinated heterocyclic compounds[J]. The Journal of Organic Chemistry, 2006, 71(4): 1436-1441.

[11] Sawamura T, Takahashi K, Inagi S, et al. Electrochemical fluorination using alkali-metal fluorides[J]. Angewandte Chemie International Edition, 2012, 51(18): 4413-4416.

[12] Yoshida J-I, Sugawara M, Kise N, Organothio groups as electroauxiliaries-electrooxidative intermolecular and intramolecular carbon-carbon bond formation[J]. Tetrahedron Letters, 1996, 37(18): 3157-3160.

[13] Morofuji. T, Shimizu A, Yoshida J-I, Direct C?N coupling of imidazoles with aromatic and benzylic compounds via electrooxidative C?H functionalization[J]. Journal of the American Chemical Society, 2014, 136(12): 4496-4499.

[14] Morofuji T, Shimizu A, Yoshida J-I, Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics[J]. Journal of the American Chemical Society, 2015, 137(31): 9816-9819.

[15] Costentin C, Drouet S, Robert M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst[J]. Science, 2012, 338(6103): 90-94.

[16] Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059.

[17] Zhao S-F, Zhu M-X, Zhang K, et al. Alkaloid induced asymmetric electrocarboxylation of 4-methylpropiophenone[J]. Tetrahedron Letters, 2011, 52(21): 2702-2705.

[18] Yang H-P, Yue Y-N, Sun, Q-L, et al. Entrapment of a chiral cobalt complex within silver: a novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2[J]. Chemical Communications, 2015, 51(61): 12216-12219.

[19] Li C-J, Organic reactions in aqueous media with a focus on carbon?carbon bond formations:? A decade update[J]. Chemical Reviews, 2005, 105(8): 3095-3166.

[20] Hilt G, Smolko K, Electrochemical regeneration of low-valent indium(I) species as catalysts for C?C bond formations[J]. Angewandte Chemie International Edition, 2001, 40(18): 3399-3402.

[21] Zha Z G, Hui A L, Zhou Y Q, et al. A recyclable electrochemical allylation in water[J]. Organic Letters, 2005, 7(10): 1903-1905.

[22] Huang J-M, Wang X-X, Dong Y, Electrochemical allylation reactions of simple imines in aqueous solution mediated by nanoscale zinc architectures[J]. Angewandte Chemie International Edition, 2011, 50(4): 924-927.

[23] Zeng C-C, Zhang N-T, Lam C M, et al. Novel triarylimidazole redox catalysts: synthesis, electrochemical properties, and applicability to electrooxidative C–H activation[J], Organic Letters, 2012, 14(5): 1314-1317.

[24] Chen J, Yan W-Q, Lam M, et al. Electrocatalytic aziridination of alkenes mediated by n-Bu4NI: a radical pathway[J]. Organic Letters, 2015, 17(4): 986-989.

[25] Liang S, Zeng C-C, Luo X-G, et al. Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu4NI induced C–N followed by a C–O bond formation cascade for the synthesis of indulines[J].Green Chemistry, 2016, 18(7): 2222-2230.

[26] Kang L-S, Luo M-H, Lam C-M, et al. Electrochemical C–H functionalization and subsequent C–S and C–N bond formation: paired electrosynthesis of 3-amino-2-thiocyanato-α,β-unsaturated carbonyl derivatives mediated by bromide ions[J].Green Chemistry, 2016, 18(13): 3767-3774.

[27] Jiang Y-Y, Liang S, Zeng C-C, et al. Electrochemically initiated formation of sulfonyl radicals: synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion[J].Green Chemistry, 2016, 18(23): 6311-6319.

[28] Zhang L, Zha Z G, Wang Z Y, Aqueous electrosynthesis of carbonyl compounds and the corresponding homoallylic alcohols in a divided cell[J]. Tetrahedron Letters, 2010, 51(10): 1426-1429.

[29] Zhang L, Zha Z G, Zhang Z L, et al. An electrochemical tandem reaction: one-pot synthesis of homoallylic alcohols from alcohols in aqueous media[J]. Chemical Communications, 2010, 46(38): 7196-7198.

[30] Zhang L, Chen H, Zha Z G, et al. Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, mediated by tin microspheres in aqueous medium[J]. Chemical Communications, 2012, 48(52): 6574-6576.

[31] Wan C F, Gao L F, Wang Q, et al. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization[J]. Organic Letters, 2010, 12(17): 3902-3905.

[32] Zhang Z L, Su J H, Zha Z G, et al. A novel approach for the one-pot preparation of α-ketoamides by anodic oxidation[J]. Chemical Communications, 2013, 49(79): 8982-8984.

[33] Zhang Z L, Su J H, Zha Z G, et al. Electrochemical synthesis of the aryl [alpha]-ketoesters from acetophenones mediated by KI[J]. Chemistry - A European Journal, 2013, 19(52): 17711-17714.

[34] Gao H H, Zha Z G, Zhang Z L, et al. A simple and efficient approach to realize difunctionalization of arylketones with malonate esters via an electrochemical oxidation[J]. Chemical Communications, 2014, 50(39): 5034-5036.

[35] Xu K, Zhang Z L, Qian P, et al. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source[J]. Chemical Communications, 2015, 51(55): 11108-11111.

[36] Li Y N, Gao H H, Zhang Z L, et al. Electrochemical synthesis of α-enaminones from aryl ketones[J]. Chemical Communications, 2016, 52(55): 8600-8603.

[37] Tanaka H, Kuroda A, Marusawa H, et al. Structure of FK506, a novel immunosuppressant isolated from streptomyces[J]. Journal of the American Chemical Society, 1987, 109(16): 5031-5033.

[38] Dubowchik G M, Vrudhula V M, Dasgupta B, et al. 2-Aryl-2,2-difluoroacetamide FKBP12 ligands:? synthesis and X-ray structural studies[J]. Organic Letters, 2001, 3(25): 3987-3990.

[39] Liu J, Zhang R, Wang S F. et al. A general and efficient copper catalyst for the double carbonylation reaction[J]. Organic Letters, 2009, 11(6): 1321-1324.

[40] Zhang C, Jiao N, Dioxygen activation under ambient conditions: Cu-catalyzed oxidative amidation?diketonization of terminal alkynes leading to α-ketoamides[J]. Journal of the American Chemical Society, 2009, 132(1): 28-29.

[41] Zhang X, Wang L, TBHP/I2-promoted oxidative coupling of acetophenones with amines at room temperature under metal-free and solvent-free conditions for the synthesis of α-ketoamides[J]. Green Chemistry, 2012, 14(8): 2141-2145.

[42] Wu W, Xu J, Huang S, et al. Co/Mn-mediated oxidative cross-coupling of indoles with β-keto esters via dioxygen activation: an efficient access to ketonization–olefination of indoles[J].Chemical Communications. 2011, 47(34): 9660-9662.

[43] Suzuki S, Kitamura Y, Lectard S, et al. Catalytic asymmetric mono-fluorination of α-keto esters: synthesis of optically active β-fluoro-α-hydroxy and β-fluoro-α-amino acid derivatives[J]. Angewandte Chemie International Edition, 2012, 51(19), 4581-4585.

[44] Nie Y, Xiao R, Xu Y, et al. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones[J]. Organic & Biomolecular Chemistry, 2011, 9(11): 4070-4078.

[45] Photis J M, Halide-directed nitrile hydrolysis[J]. Tetrahedron Letters. 1980, 21(37): 3539-3540.

[46] Urgoitia G, SanMartin R, Herrero M T, et al. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media[J]. Green Chemistry, 2011, 13(8): 2161-2166.

[47] Thompson W J, Thompson D D, Anderson P S, et al. EP341961A2[P]. Eur. Pat. Appl, 1989, 30.

[48] Guzman A, Romero M, Vilsmeier-Haack reaction with glutarimides. synthesis of 2,6-dichloro-1,4-dihydropyridine-3,5-dicarboxaldehydes[J]. The Journal of Organic Chemistry, 1990, 55(22): 5793-5797.

[49] Mohammed A, Nagendrappa G, A remarkably simple-oximation of ketones to 1,2-dione monooximes using the chlorotrimethylsilane–isoamyl nitrite combination[J]. Tetrahedron Letters, 2003, 44(13): 2753-2755.

[50] Zhuang J, Wang C Q, Xie F, et al. One-pot efficient synthesis of aryl-keto esters from aryl-ketones[J]. Tetrahedron, 2009, 65(47): 9797-9800.

[51] Lamani M, Prabhu K R, NIS-catalyzed reactions: amidation of acetophenones and oxidative amination of propiophenones[J]. Chemistry - A European Journal, 2012, 18(46): 14638-14642.

[52] Xu K, Fang Y, Yan Z C, et al. A highly tunable stereoselective dimerization of methyl ketone: efficient synthesis of E- and Z-1,4-enediones[J]. Organic Letters, 2013, 15(9): 2148-2151.

[53]Zhu Y P, Liu M C, Jia F C, et al. Metal-free sp3 C?H bond dual-(Het)arylation: I2-promoted domino process to construct 2,2-bisindolyl-1-arylethanones[J]. Organic Letters, 2012, 14(13): 3392-3935.

[54] Greenhill,J. V, Enaminones[J]. Chemical Society Reviews, 1977, 6(3): 277-294;

[55] Liu J Y, Cao G E, Xu W, et al. Ni(OAc)2: a highly efficient catalyst for the synthesis of enaminone and enamino ester derivatives under solvent-free conditions[J]. Applied Organometallic Chemistry, 2010, 24(10): 685-691.

[56] Saleh T S, Al-Omar M A, Abdel-Aziz H A, One-pot synthesis of enaminones using gold’s reagent[J]. Letters in Organic Chemistry, 2010, 7(6): 483-486.

[57] Miura T, Funakoshi Y, Tanaka T, et al. Direct production of enaminones from terminal alkynes via rhodium-catalyzed reaction of formamides with N sulfonyl-1,2,3- triazoles[J]. Organic Letters, 2014, 16(10): 2760-2763.

[58] Miura T, Funakoshi Y, Murakami M, et al. Synthesis of enaminones by rhodium-catalyzed denitrogenative rearrangement of 1 (N sulfonyl-1,2,3-triazol-4-yl)alkanols[J]. Journal of the American Chemical Society, 2012, 134(42): 17440-17443.

[59] Ueno S, Shimizu R, Kuwano R, Nickel-catalyzed formation of a carbon–nitrogen bond at the β position of saturated ketones[J]. Angewandte Chemie International Edition, 2009, 48(25): 4543-4545.

[60] Yu D,Sum Y N,Ean A C C, et al. Acetylide ion (C22-) as a synthon to link electrophiles and nucleophiles: a simple method for enaminone synthesis[J]. Angewandte Chemie International Edition, 2013, 52(19): 5125-5128.

[61] Stanovnik B, Svete J, Synthesis of heterocycles from alkyl 3-(dimethylamino)propenoates and related enaminones[J]. Chemical Reviews, 2004, 104(5): 2433-2480.

[62] Ghandi M, Jamea A H, Pyridine-mediated, one-pot, stereoselective synthesis of acyclic enaminones[J]. Tetrahedron Letters, 2011, 52(31): 4005-4007.

[63] Yang Y, Ni F, Shu W-M, et al. Synthesis of tetrasubstituted unsymmetrical 1,4-enediones via copper-promoted autotandem catalysis and air as the oxidant[J]. The Journal of Organic Chemistry, 2013, 78(11): 5418-5426.

[64] Akimova T I, Trofimenko N N, Verbitskii G A, et al. (Z)-1,4-diphenyl-2-phenylamino-2-butene-1,4-dione: synthesis and mechanizm of formation[J]. Russian Journal of Organic Chemistry, 2004, 40(5): 693-698.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.