•  
  •  
 

Corresponding Author

Yu-sheng YANG(yangyush32@126.com)

Abstract

In this paper, research activities from my groups in the field of electrochemical energy storage are reviewed for the past 22 years, which is divided into three sections. The first section describes the researches related to high specific energy and high specific power energy storage devices, including lithium sulfur batteriies (sulfur composite cathode material, lithium sulfur battery fabrication, lithium boron alloy as lithium sulfur battery anodes, and sulfur lithium-ion battery new system), supercapacitors (super activated carbon, capacitive carbon prepared from phenolic resin, carbon nanotube array parasitic pseudo-capacitive energy storage materials, necessary properties of capacitive carbons, nickel hydroxide xerogels pseudo-capacitive energy storage materials,the development of capacitors, and the determination of “the fourth type” supercapacitors), and lithium-ion batteries (the confrontation between lithium-ion batteries and renewable fuel cells, the cathode material of dual variable-valency elements, lithium cobalt phosphate cathode materials, and high-power lithium-ion batteries). The second section describes the researches linked to a large-scale energy storage battery, including new systems of flow battery (dual function flow battery of energy storage and electrochemical synthesis, all metal compounds single flow battery, and organic compound positive electrode single flow battery), revitalizing lead-acid batteries (promoting new technology of lead-acid batteries, lead-carbon battery and new grid of lead-acid battery), and economic benefit calculation method of energy storage battery (station). The third section describes the research roadmaps in the development of electric vehicles including hydrogen fuel cell electric vehicles and pure electric vehicles and hybrid electric vehicles, the suggestions in the development of electric vehicles in China, striving for the rationalization of subsidies for electric vehicles, adhering to the purpose of “energy saving and emission reduction” of electric vehicles, and putting forward “direct drive electric vehicles for power generation”. Three opinions based on my experiences are provided at the end of this paper.

Graphical Abstract

Keywords

electrochemical energy storage, lithium sulfur battery, supercapacitor, lithium-ion battery, flow battery, lead-acid battery, electric vehicles

Publication Date

2020-08-28

Online Available Date

2020-06-10

Revised Date

2020-06-10

Received Date

2020-04-13

References

[1] Wang Y K (王维坤). Study on organic polysulfides-the novel cathode materials for lithium batteries[D]. Research Institute of Chemical Defense (防化研究院), 2003.

[2] Wang Y S (王维坤), Yu Z B (余仲宝), Wang A B (王安邦), et al. Research progress and ideas of lithium sulfur battery[C]// The 14th National Electrochemical Conference, Yangzhou, China, 2007: H-002.

[3] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
doi: 10.1038/nmat2460 URL pmid: 19448613

[4] Wang Y K (王维坤), Wang A B (王安邦), Jin Z Q (金朝庆), et al. Development and strategy for cathode materials of advanced lithium sulfur batteries[J]. Energy Storage Science and Technology (储能科学与技术), 2017,6(3):1-15.

[5] Wang M J, Wang W K, Wang A B, et al. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chemical Communication, 2013,49:10263-10265.
doi: 10.1039/c3cc45412f URL

[6] Duan B C, Wang W K, Zhao H L, et al. Li-B alloy as anode material for lithium/sulfur battery[J]. ECS Electrochemistry Letters, 2013,2(6):A47-A51.
doi: 10.1149/2.005306eel URL

[7] Liu R J (刘荣江). Study on performance of the electrodes for lithium sulfur secondary battery[D]. University of Science and Technology Beijing (北京科技大学), 2012.

[8] Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014,10(21):4257-4263.
doi: 10.1002/smll.201401837 URL pmid: 25074801

[9] Liu Q, Zhou S S, Tang C, et al. Li-B alloy as an anode material for stable and long life lithium metal batteries[J]. Energies, 2018,11(10):2512.
doi: 10.3390/en11102512 URL

[10] Liu S S, Yang J, Yin L C, et al. Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries[J]. Electrochimica Acta, 2011,56(24):8900-8905.
doi: 10.1016/j.electacta.2011.07.109 URL

[11] Duan B C, Wang W K, Wang A B, et al. A new lithium secondary battery system: the sulfur/lithium-ion battery[J]. Journal of Materials Chemistry A, 2014,2(2):308-314.
doi: 10.1039/c3ta13782a URL

[12] Shi L, Liu Y G, Wang W K, Wang A, et al. High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte[J]. Journal of Alloys & Compounds, 2017,723:974-982.

[13] Wang J L, Yang J, Xie J Y, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002,14(13/14):963-965.
doi: 10.1002/(ISSN)1521-4095 URL

[14] Wang K, Guan Y P, Jin Z Q, et al. Te0.045S0.955PAN composite with high average discharge voltage for Li-S battery[J], Journal of Energy Chemistry, 2019, 39:249-255.
doi: 10.1016/j.jechem.2019.03.010 URL

[15] Jin Z Q, Liu Y G, Wang W K, et al. A new insight into the lithium storage machanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy storage materials, 2018,14:272-278.
doi: 10.1016/j.ensm.2018.04.013 URL

[16] Xu B (徐斌), Cao G P ( 曹高萍), Yang Y S (杨裕生), et al. Preparation of high specific capacity carbon electrode materials from apricot shell for electrochemical capacitors[C]// The 11th National Electrochemical Conference, Nanjing, China, 2001.

[17] Wen Y H (文越华), Cao G P (曹高萍), Cheng J (程杰), et al. Nanoporous glassy carbon — A new electrode material for supercapacitors I. Effect of curing temperature on its structure and properties[J]. New Carbon Materials (新型炭材料), 2003,18(3):219-224.

[18] Wen Y H, Cao G P, Yang Y S. Studies on nanoporous glassy carbon as a new electrochemical capacitor material[J]. Journal of Power Sources, 2005,148:121-128.
doi: 10.1016/j.jpowsour.2005.02.001 URL

[19] Wen Y H, Cao G P, Cheng J, et al. Correlation of capacitance with the pore structure for nanoporous glassy carbon electrodes[J]. Journal of The Electrochemical Society, 2005,152(9):A1770-A1775.
doi: 10.1149/1.1984447 URL

[20] Zhang J L, Zhang W F, Zhang H, et al. Facile preparation of water soluble phenol formaldehyde resin-derived activated carbon by Na2CO3 activation for high performance supercapacitors[J]. Materials Letters, 2017,206:67-70.

[21] Zhang J L, Zhang W F, Han M F, et al. Synjournal of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2018,270:204-210.

[22] Zhang H (张浩). Preparation and performance of carbon nanotube arrry and carbon nanotube array-based composite electrodes for electrochemical capacitors[D]. Research Institute of Chemical Defense (防化研究院), 2008.

[23] Yang Y S (杨裕生), Cao G P (曹高萍). Adjustment to properties of porous carbon for electrochemical capacitors[J]. Battery Bimonthly (电池), 2006,36(1):34-36.

[24] Cheng J (程杰). Studies of the electrochemical capacitors based on activated carbons and Ni(OH)2 xerogels[D]. Research Institute of Chemical Defense (防化研究院), 2006.

[25] 杨裕生. 关于可再生氢-氧燃料电池的议论[J]. 化学与物理电源系统, 2008,5:4-7.

[26] Si Y C, Zhao L, Yu Z B, et al. A novel amorphous Fe2V4O13 as cathode material for lithium secondary batteries[J]. Materials Letters, 2012,72:145-147.

[27] Si Y C (司玉昌). Research on cathode materials containing V and Fe oxides with double valence changes for lithium secondary batteries[D]. Research Institute of Che-mical Defense (防化研究院), 2013.

[28] Wang Y (王跃). Preparation and improvement of electrochemical performance of LiCoPO4 as high voltage cathode material[D]. University of Science and Technology Beijing (北京科技大学), 2018.

[29] Wen Y H, Cheng J, Ma P H, Yang Y S. Bifunctional redox flow battery-1 V(III)/V(II) - glyoxal(O2) system[J]. Electrochimica Acta, 2008,53(9):3514-3522.
doi: 10.1016/j.electacta.2007.11.073 URL

[30] Wen Y H, Cheng J, Xun Y, et al. Bifunctional redox flow battery-2. V(III)/V(II)-L-cystine(O2) system[J]. Electrochimica Acta 2008,53(20):6018-6023.

[31] Wen Y H, Cheng J, Ning S Q, et al. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction[J]. Journal of Power Sources, 2009,188(1):301-307.
doi: 10.1016/j.jpowsour.2008.11.054 URL

[32] Pletcher D, Wills R. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II)[J]. Physical Chemistry Chemical Physics, 2004,6(8):1779-1785.
doi: 10.1039/b401116c URL

[33] Liu D Y (刘东阳), Cheng J (程杰), Pan J Q (潘军青), et al. Studies on the all-lead flow batteries in HBF4 solution[J]. Acta Physico - Chimica Sinica (物理化学学报), 2011,27(11):2571-2576.
doi: 10.3866/PKU.WHXB20111105 URL

[34] Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry Communications, 2007,9(11):2639-2642.
doi: 10.1016/j.elecom.2007.08.016 URL

[35] Xu Y (徐艳). Study of the novel hydroquinone/quinone flow batteries[D]. Research Institute of Chemical Defense (防化研究院), 2010.

[36] Wang L Y, Zhang H, Cao G P, et al. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries[J]. Electrochimica Acta, 2015,186:654-663.

[37] Wang L Y, Zhang W F, Gu L, et al. Tracking the morphology evolution of nano-lead electrodeposits on the internal surface of porous carbon and its influence on lead-carbon batteries[J]. Electrochimica Acta, 2016,222:376-384.
doi: 10.1016/j.electacta.2016.10.189 URL

[38] Wang L Y, Zhang H, Zhang W F, et al. A new nano lead-doped mesoporous carbon composite as negative electrode additives for ultralong-cyclability lead-carbon batteries[J]. Chemical Engineering Journal, 2018,337:201-209.
doi: 10.1016/j.cej.2017.12.089 URL

[39] Zhang S K, Zhang H, Cheng J, et al. Novel polymer-graphite composite grid as a negative current collector for lead-acid batteries[J]. Journal of Power Sources, 2016,334:31-38.
doi: 10.1016/j.jpowsour.2016.09.097 URL

[40] Yang Y S (杨裕生). Grid of lead acid battery and lead acid battery[P]. Patent number: ZL201921251389.1 (中国).

[41] Yang Y S (杨裕生), Cheng J (程杰), Cao G P (曹高萍). A gauge for direct economic benefits of energy storage devices[J]. Battery Bimonthly (电池), 2011,41(1):19-21.

[42] Yang Y S (杨裕生). Discussion on electric vehicles and electrochemical energy storage[M]. Science Press (科学出版社), 2012.

[43] Yang Y S (杨裕生). Re-discussion on electric vehicles and electrochemical energy storage[M]. Science Press (科学出版社), 2017.

[44] Yang Y S (杨裕生). An energy-saving electric vehicle driven directly by electric power generation[P]. Patent number: 2017107099346 (中国).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.