•  
  •  
 

Corresponding Author

Yan-Xia Chen(yachen@ustc.edu.cn)

Abstract

The solution resistance (Ru) between the working electrode (WE) and the reference electrode (RE) may lead to significant Ohmic drop (iRu) and deviation of actually applied potential at the WE to the desired ones in electrochemical measurement. In the case of high current or large Ru, iRu compensation is imperative. Errors associated with insufficient compensation of theiRu drop may significantly affect the accuracy of data measured by conventional electrochemical methods, which may consequently result in wrong judgment and conclusions. In this article, we discuss important factors which may affect the accuracy of iRu compensation as well as ways how to eliminate such errors through examples. Since Ru will be changed sensitively with the distance between the tip of the Luggin capillary of the RE and the WE, it should always be kept at a fixed distance (usually as close to the surface of the WE as possible but without affecting the behavior of electrode processes) during a set of measurements.
In addition to the structure of the cell (relative positions of WE and RE), the methods of measuring Ru, current sensitivity for recording data, percentage of Ru compensation, and instruments could cause the result to be deviated from the actual value, which are demonstrated by taken hydrogen evolution reaction on Pt electrode as model reactions measured using both CHI and Autolab PGSTAT 302N potentiostats. Comparing the AC impedance method with the potential step method in the automatic compensation function of CHI potentiostat, theRu measured by the potential step method was smaller than the Ru measured by the AC impedance method and the actual value. It is suggested to use the AC impedance method to measure Ru, input the resistance value manually and complete the compensation by the instrument. Current sensitivity may limit the maximum Ru to be compensated, hence, one should select the right current sensitivity before recording data. In particular, when compensating by manual input using some types of potentiostat, one should be aware that the software may show the completely compensated resistance, in reality, however, the part of the resistance that exceeded the upper limit will not be compensated successfully. Furthermore, the percentage ofRu compensation should be carefully optimized before carrying out the actual measurements, through comparing curves recorded with different percentages of compensation. Moreover, the same compensation level but conducted with different instruments may lead to significantly different results, using the same instrument in a series study is recommended to mitigate related errors. A set of strict compensation standards applied to all instruments and electrochemical systems is difficult to be established. Hence, we suggest carrying out some control experiments to optimize the iRu compensation before the actual measurements, and write in detail their compensation methods and parameters in the published results, especially the factors mentioned in this paper.

Graphical Abstract

Keywords

measurement, iRu compensation, STEP, EIS, sensitivity

Publication Date

2021-06-28

Online Available Date

2021-05-10

Revised Date

2021-04-17

Received Date

2021-03-18

References

[1] Chen Y X (陈艳霞), Huang J (黄俊), Zhan D P (詹东平). Encouraging more frogs in electrochemistry[J]. J. Electrochem.(电化学), 2020, 26(1): 1-2.

[2] He F, Chen W, Chen J Q, Zhen E F, Cai J, Chen Y X. The effect of water on the quantification of volatile species by differential electrochemical mass spectrometry[J]. Anal. Chem., 2021, 93(13): 5547-5555.
doi: 10.1021/acs.analchem.1c00116 URL

[3] Vliet D, Strmcnik D S, Chao W, Stamenkovic V R, Markovic N M, Koper M. On the importance of correcting for the uncompensated ohmic resistance in model experiments of the oxygen reduction reaction[J]. J. Electroanal. Chem., 2010, 647(1): 29-34.
doi: 10.1016/j.jelechem.2010.05.016 URL

[4] Bauer H, Foo D. Second-harmonic alternating current polarography[J]. Aust. J. Chem., 1966, 19(7): 1103-1115.
doi: 10.1071/CH9661103 URL

[5] Milner D F, Weaver M J. The influence of uncompensated solution resistance on the determination of standard electrochemical rate constants by cyclic voltammetry, and some comparisons with ac voltammetry[J]. Anal. Chim. Acta, 1987, 198: 245-257.
doi: 10.1016/S0003-2670(00)85025-4 URL

[6] Liao L W (廖玲文). Methodology and electrocatalysts for oxygen reduction reaction[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2013.

[7] Britz D. iR elimination in electrochemical cells[J]. J. Electroanal. Chem. Interf. Electrochem., 1978, 88(3): 309-352.
doi: 10.1016/S0022-0728(78)80122-3 URL

[8] Oldham K. The effect of uncompensated resistance on the potential-step method of investigating electrochemical kinetics[J]. J. Electroanal. Chem., 1966, 11(3): 171-187.

[9] Newman J. Current distribution on a rotating disk below the limiting current[J]. J. Electrochem. Soc., 1966, 113(12): 1235-1241.
doi: 10.1149/1.2423795 URL

[10] Piontelli R, Bianchi G, Bertocci U, Guerci C, Rivolta B. Meβmethoden der Polarisationsspannungen II[J]. Z. Elektrochem., 1954, 58(1): 54-64.

[11] Bockris J M, Azzam A. The kinetics of the hydrogen evolution reaction at high current densities[J]. Trans. Faraday Sot., 1952, 48: 145-160.

[12] Montella C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop[J]. J. Electroanal. Chem., 2002, 518(2): 61-83.
doi: 10.1016/S0022-0728(01)00691-X URL

[13] Liu X, Cui S S, Qian M M, Sun Z J, Du P W. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions[J]. Chem. Commun., 2016, 52(32): 5546-5549.
doi: 10.1039/C6CC00526H URL

[14] Chan S H, Chen X J, Khor K A. Reliability and accuracy of measured overpotential in a three-electrode fuel cell system[J]. J. Appl. Electrochem., 2001, 31(10): 1163-1170.
doi: 10.1023/A:1012232301349 URL

[15] Roullier L, Laviron E. Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry: Application to the determination of surface rate constants[J]. J. Electroanal. Chem. Interf. Electrochem., 1983, 157(2): 193-203.

[16] Mirĉeski V, Lovric M. Ohmic drop effects in square-wave voltammetry[J]. J. Electroanal. Chem., 2001, 497(1-2): 114-124.
doi: 10.1016/S0022-0728(00)00464-2 URL

[17] Juárez A, Baruzzi A, Yudi L. Ohmic drop effects in square-wave voltammetry response for an ion transfer process at a liquid-liquid interface[J]. J. Electroanal. Chem., 2005, 577(2): 281-286.
doi: 10.1016/j.jelechem.2004.12.026 URL

[18] Nicholson R S, Shain I. Correction. Theory of stationary electrode polarography[J]. Anal. Chem., 1964, 36(7): 1212-1212.
doi: 10.1021/ac60213a053 URL

[19] Haber F. Über die elektrische Reduktion von Nichtelektrolyten[J]. Z. Phys. Chem., 1900, 32(1): 193-270.

[20] Tang Y L (唐延丽). Electrochemical impedance spectroscopy study of hydrogen and oxygen-containing species adsorption on Ir(111) electrode[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2020.

[21] Scribner L L. The measurement and correction of electrolyte resistance in electrochemical tests[M]. Philadelphia: ASTM, 1990: 180-191.

[22] Metrohm Instruments. Ohmic Drop: Part 1 - Basic Principles[EB/OL].

[2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-003?fromProductFinder=true.

[23] Cooper K R, Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. J. Power Sour-ces, 2006, 160(2): 1088-1095.

[24] Oelβner W, Berthold F, Guth U. The iR drop-well-known but often underestimated in electrochemical polarization measurements and corrosion testing[J]. Mater. Corros., 2006, 57(6): 455-466.

[25] Booman G, Holbrook W. Electroanalytical controlled-potential instrumentation[J]. Anal. Chem., 1963, 35(12): 1793-1809.
doi: 10.1021/ac60205a008 URL

[26] Gamry Instruments. Understanding ir compensation[EB/OL].

[2021-03-18]. https://cn.gamry.com/application-notes-3/instrumentation/understanding-ir-compensation/.

[27] Metrohm Instruments. Ohmic Drop: Part 2-Measurement [EB/OL].

[2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-004?fromProductFinder=true.

[28] Yamagishi H. Automatic compensation of the IR drop in three-electrode systems by use of an electronic unit[J]. J. Electroanal. Chem., 1992, 326(1-2): 129-137.
doi: 10.1016/0022-0728(92)80508-2 URL

[29] Yarnitzky C, Friedman Y. Dynamic compensation of the over all and uncompensated cell resistance in a two-or three-electrode system. Steady state techniques[J]. Anal. Chem., 1975, 47(6): 876-880.
doi: 10.1021/ac60356a050 URL

[30] Guo Z Y, Lin X Q. Ultrafast cyclic voltammetry at scan rates of up to 3 MV s-1 through a single-opamp circuit with positive feedback compensation of ohmic drop[J]. J. Electroanal. Chem., 2004, 568: 45-53.
doi: 10.1016/j.jelechem.2004.01.005 URL

[31] Britz D. 100% ir compensation by damped positive feedback[J]. Electrochim. Acta, 1980, 25(11): 1449-1452.
doi: 10.1016/0013-4686(80)87160-X URL

[32] Chen G, Xie J J, Zhang Z H, Meng W Q, Zhang C F, Kang K, Wu Y B, Guo Z Y. A portable digital-control electrochemical system with automatic ohmic drop compensation for fast scan voltammetry and its application to ultrasensitive detection of chromium (III)[J]. Sens. Actuators B Chem., 2019, 301: 127135.
doi: 10.1016/j.snb.2019.127135 URL

[33] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: John Wiley & Sons, 2001: 632-657.

[34] Jia Z (贾铮), Dai C S (戴长松), Chen L (陈玲). Electrochemical measurement methods[M]. Beijing: Chemical Industry Press(化学工业出版社), 2006: 193-196.

[35] Clavilier J, Faure R, Guinet G, Durand R. Preparation of monocrystalline Pt microelectrodes and electrtochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 107(1): 205-209.
doi: 10.1016/S0022-0728(79)80022-4 URL

[36] Tang Y L (唐延丽), Chen W (陈微), Xu M L (许绵乐), Wei Z (韦臻), Cai J (蔡俊), Chen Y X (陈艳霞). Unravelling the hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy[J]. Chinese J. Chem. Phys.(化学物理学报), 2020, 33(4).

[37] He P, Faulkner L R. Intelligent, automatic compensation of solution resistance[J]. Anal. Chem., 1986, 58(3): 517-523.
doi: 10.1021/ac00294a004 URL

[38] Piontelli R, Bianchi G, Aletti R. Messungsmethoden der Polarisationsspannungen mittels Modellversuchen[J]. Z. Elektrochem, 1952, 56(2): 86-93.

[39] Piontelli R, Bertocci U, Bianchi G, Guerci C, Poli G. Meβmethoden der Polarisationsspannungen. III[J]. Z. Ele-ktrochem, 1954, 58(2): 86-95.

[40] Piontelli R, Rivolta B, Montanelli G. Meβmethoden der Polarisationsspannungen. IV[J]. Z. Elektrochem, 1955, 59(1): 64-67.

[41] Barnartt S. Primary current distribution around capillary tips used in the measurement of electrolytic polarization[J]. J. Electrochem. Soc., 1952, 99(12): 549.
doi: 10.1149/1.2779650 URL

[42] Barnartt S. Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary[J]. J. Electrochem. Soc., 1961, 108(1): 102.
doi: 10.1149/1.2427994 URL

[43] Hayes M, Kuhn A, Patefield W. Techniques for the determination of ohmic drop in half-cells and full cells: A review[J]. J. Power Sources, 1977, 2(2): 121-136.
doi: 10.1016/0378-7753(77)80013-X URL

[44] Müller E, Soller M. Die Rolle des Bleisuperoxyds als Anode bei der elektrolytischen Oxydation des Chromsulfates zu Chromsäure[J]. Z. Elektrochem, 1905, 11(48): 863-872.

[45] Milligan A. A method for measuring the potential of a current-carrying electrode[J]. Br. J. Appl. Phys., 1952, 3(12): 372.
doi: 10.1088/0508-3443/3/12/302 URL

[46] Pletcher D, Greff R, Peat R, Peter L, Robinson J. Insturmental methods in electrochemistry[M]. New York: Ellis Horwood Ltd, 2001: 368-370.

[47] Newman J. Ohmic potential measured by interrupter techniques[J]. J. Electrochem. Soc., 1970, 117(4): 507-508.
doi: 10.1149/1.2407553 URL

[48] Arjmand F, Zhang L F. Solution resistivity, ohmic drop and oxygen reduction rate at high temperature pressurized water[J]. Electrochim. Acta, 2016, 216: 438-448.
doi: 10.1016/j.electacta.2016.08.136 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.