Authors
Lin Lin, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Xiuxuan Hou, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China.
Zhechen Fan, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Yixuan Yin, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Weiyi Zhao, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Kai Wei, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Yudie Zhou, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Lina Hou, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Ying Wang, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China.Follow
Hao Wan, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.Follow
Junjie Ge, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.Follow
Corresponding Author(s)
Ying Wang(ywang_2012@ciac.ac.cn);
Hao Wan(wh1992@mail.ustc.edu.cn);
Junjie Ge(gejunjie@ustc.edu.cn)
Abstract
Fe-N-C catalysts have long suffered from kinetically sluggish oxygen reduction reaction (ORR) due to excessive adsorption strength toward oxygen intermediates and low site utilization. Heteroatom doping effectively accelerates ORR reaction kinetics through electronic structure modulation of metal sites for optimal intermediate adsorption, while chemical vapor deposition (CVD) enhances the turnover frequency (TOF) of active sites. Herein, we develop an FeSNC catalyst featuring abundant FeS1N4 sites via a dual-precursor CVD strategy. Experimental and theoretical analyses reveal that S incorporation disrupts the symmetric coordination of active sites, which optimizes OH* adsorption energies from 0.212 eV to 1.194 eV. Moreover, the TOF increased from 1.98 e-1·site-1·s-1 to 6.32 e-1·site-1·s-1, significantly enhancing the intrinsic activity of the catalyst. More notably, the hydrophilic character of S-containing species substantially improved hydrophilicity in the S-doped catalyst, thereby promoting mass transport of oxygen and proton delivery. As a result, FeSNC catalyst exhibits an extremely high half-wave potential of 0.863 V in 0.1 M HClO4 and achieves a peak power density of 1.2 W·cm-2 in H2-O2 PEMFCs. This work highlight the critical role of coordination engineering.
Graphical Abstract

Keywords
Oxygen reduction reaction, Fe-N-C, Heteroatom doping, Electronic regulation, Mass transport
DOI
10.61558/2993-074X.3592
Recommended Citation
Lin Lin, Xiuxuan Hou, Zhechen Fan, Yixuan Yin, Weiyi Zhao, Kai Wei, Yudie Zhou, Lina Hou, Ying Wang, Hao Wan, Junjie Ge. Axial Sulfur-Coordination Engineering Boosts Fe‒N‒C Catalysts for High-Performance Proton Exchange Membrane Fuel Cells[J]. Journal of Electrochemistry, doi: 10.61558/2993-074X.3592.