•  
  •  
 

Corresponding Author

Wen-bin CAI(wbcai@fudan.edu.cn)

Abstract

Technical aspects on developing electrochemical ATR surface-enhanced infrared absorption spectroscopy are briefly accounted mainly based on our recent investigations, including wet-fabrication of metallic film electrodes on Si prism, design and construction of a wide-frequency combination optical window and a spectroelectrochemical cell switchable for external and internal reflection modes.

Graphical Abstract

Keywords

electrochemistry, ATR-SEIRAS, experimental progresses

Publication Date

2013-02-28

Online Available Date

2012-07-05

Revised Date

2012-06-30

Received Date

2012-06-04

References

[1] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 1980, 45(3): 201-204.

[2] Osawa M, Kuramitsu M, Hatta A, et al. Electromagnetic effect in enhanced infrared-ibsorption of adsorbed molecules on thin metal-films[J]. Surface Science, 1986, 175(3): L787-L793.

[3] Krauth O, Fahsold G, Pucci A. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J]. Journal of Chemical Physics, 1999, 110(6): 3113-3117.

[4] Merklin G T, Griffiths P R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver Films[J]. Langmuir, 1997, 13(23): 6159-6163.

[5] Osawa M. Surface-enhanced infrared absorption spectroscopy[M]. J M Chalmers, P R Griffiths (Editors.). Handbook of vibrational spectroscopy. Chichester, UK, John Wiley & Sons, 2002, 1: 785-799.

[6] Tian Z Q, Ren B, Wu D Y. Surface enhanced raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures[J]. Journal of Physical Chemistry B, 2002, 106(37): 9463-9483.

[7] Xue X K, Huo S J, Yan Y G, et al. In situ surface-enhanced vibrational spectroscopies on isonicotinic acid adsorbed on gold electrodes in alkaline solutions[J]. Acta Chimica Sinica, 2007, 65(15): 1437-1442.

[8] Li Q X, Xue X K, Xu Q J, et al. Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes[J]. Applied Spectroscopy, 2007, 61(12): 1328-1333.

[9] Diao Y X, Han M J, Wan L J, et al. Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir, 2006, 22(8): 3640-3646.

[10] Yan Y G, Yang Y Y, Peng B, et al. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS[J]. Journal of Physical Chemistry C, 2011, 115(33): 16378-16388.

[11] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879.

[12] Samjeske G, Komatsu K, Osawa M. Dynamics of CO oxidation on a polycrystalline platinum electrode: A time-resolved infrared study[J]. Journal of Physical Chemistry C, 2009, 113(23): 10222-10228.

[13] Osawa M, Komatsu K, Samjeske G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie-International Edition, 2011, 50(5): 1159-1163.

[14] Zhou W, Zhang Y, Abe M, et al. Surface coordination of nitric oxide to a self-assembled monolayer of a triruthenium cluster: An in situ infrared spectroscopic study[J]. Langmuir, 2008, 24, 15: 8027-8035.

[15] Ma M, Yan Y G, Wang J Y, et al. A study of NO adducts of iron protoporphyrin IX adlayer on Au electrode with in situ ATR-FTIR spectroscopy[J]. Journal of Physical Chemistry C, 2007, 111(24): 8649-8654.

[16] Ma M, Yan Y G, Huo S J, et al. In situ surface enhanced IR absorption spectroscopy on CO adducts of iron protoporphyrin IX self-assembled on a Au electrode[J]. Journal of Physical Chemistry B, 2006, 110(30): 14911-14915.

[17] Jiang X U, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2008, 112(3): 813-819.

[18] Osawa M. Dynamic processes in electrochemical reactions studied by surface enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880.

[19] Lu G Q, Sun S G, Chen S P, et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 19-23.

[20] Chen Y J, Sun S G, Chen S P, et al. Anomalous IR properties of nanostructured films created by square wave potential on an array of Pt microelectrodes: an in situ microscope FTIR study of CO adsorption[J]. Langmuir, 2004, 20(23): 9920-9925.

[21] Yan Y-G, Peng B, Yang Y-Y, et al. Interfacial water at a CO-predosed platinum electrode: A surface enhanced infrared study with strong hydrogen evolution reaction control[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5584-5592.

[22] Bjerke A E, Griffiths P R, Theiss W. Surface enhanced infrared absorption of CO on platinized platinum[J]. Analytical Chemistry, 1999, 71(10): 1967-1974.

[23] Miyake H, Osawa M. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution[J]. Chemistry Letters, 2004, 33(3): 278-279.

[24] Rodes A, Orts J M, Perez J M, et al. Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy[J]. Electrochemistry Communications, 2003, 5(1): 56-60.

[25] Delgado J M, Orts J M, Rodes A. ATR-SRIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes[J]. Langmuir, 2005, 21(19): 8809-8816.

[26] Ataka K, Yotsuyanagi T, Osawa M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry, 1996, 100(25): 10664-10672.

[27] Cai W B, Wan L J, Noda H, et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998, 14(24): 6992-6998.

[28] Ataka K, Osawa M. In Situ infrared study of cytosine adsorption on gold electrodes[J]. Journal of Electroanalytical Chemistry, 1999, 460(1-2): 188-196.

[29] Osawa M, Yoshii K. In situ and real-time surface-enhanced infrared study of electrochemical reactions[J]. Applied Spectroscopy, 1997, 51(4): 512-518.

[30] Sun S G, Cai W B, Wan L J, et al. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy[J]. Journal of Physical Chemistry B, 1999, 103(13): 2460-2466.

[31] Wandlowski T, Ataka K, Pronkin S, et al. Surface enhanced infrared spectroscopy - Au(111-20 nm)/sulphuric acid - new aspects and challenges[J]. Electrochimica Acta, 2004, 49(8): 1233-1247.

[32] Watanabe M, Zhu Y M, Uchida H. Oxidation of carbon monoxide at a platinum film electrode studied by fourier transform infrared spectroscopy with attenuated total reflection technique[J]. Langmuir, 1999, 15(25): 8757-8764.

[33] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. Journal of Physical Chemistry B, 2004, 108(8): 2654-2659.

[34] Ohta N, Nomura K, Yagi I. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface enhanced infrared absorption (SEIRA) spectroscopy[J]. Langmuir, 2010, 26(23): 18097-18104.

[35] Cai W B, Sun S G, Noda H, et al. Surface enhanced infrared study of melocular adsorption on transition metal electrodes. 197th Meeting, Toronto, the Electrochemical Society. 2000.

[36] Pronkin S, Wandlowski T. ATR-SEIRAS-an Approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes[J]. Surface Science, 2004, 573(1): 109-127.

[37] Nowak C, Luening C, Knoll W, et al. A Two-layer gold surface with improved surface enhancement for spectro-electrochemistry using surface enhanced infrared absorption spectroscopy[J]. Applied Spectroscopy, 2009, 63(9): 1068-1074.

[38] Miyake H, Ye S, Osawa M. Electroless deposition of gold thin films on silicon for surface enhanced infrared spectroelectrochemistry[J]. Electrochemistry Communications, 2002, 4(12): 973-977.
[39] Yan Y G, Li Q X, Huo S J, et al. Ubiquitous strategy for probing ATR surface enhanced infrared absorption at platinum group metal-electrolyte interfaces[J]. Journal of Physical Chemistry B, 2005, 109(16): 7900-7906.
[40] Huo S J, Xue X K, Yan Y G, et al. Extending in situ attenuated-total-reflection surface enhanced infrared absorption spectroscopy to Ni electrodes[J]. Journal of Physical Chemistry B, 2006, 110(9): 4162-4169.
[41] Miyake H, Hosono E, Osawa M, et al. Surface enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes[J]. Chemical Physics Letters, 2006, 428, 4-6: 451-456.
[42] Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: An application to real-time monitoring of electrocatalytic reactions[J]. Chemical Communications, 2002(14): 1500-1501.
[43] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.
[44] Cuesta A, Cabello G, Gutierrez C, et al. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20091-20095.
[45] Yan Y G, Li Q X, Huo S J, et al. Surface-enhanced IR absorption effect of Pt and Ru nanofilms fabricated by all-wet processes[J]. Acta Chimica Sinica, 2005, 63(6): 545-549.
[46] Huo S J, Wang J Y, Yao J L, et al. Exploring electrosorption at iron electrode with in situ surface enhanced infrared absorption spectroscopy[J]. Analytical Chemistry, 2010, 82(12): 5117-5124.
[47] Huo S J, Wang J Y, Sun D L, et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode[J]. Applied Spectroscopy, 2009, 63(10): 1162-1167.
[48] Li Q X, Yan Y G, Xu Q J, et al. Attenuated-total-reflection surface enhanced infrared absorption spectroscopy on cadmium electrode[J]. Chemical Journal of Chinese Universities Chinese, 2006, 27(12): 2414-2416.
[49] Lu G Q, Sun S G, Cai L R, et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: abnormal infrared effects (AIRES)[J]. Langmuir, 2000, 16(2): 778-786.
[50] Huo S J, Xue X K, Li Q X, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface enhanced IR absorption spectroscopy[J]. Journal of Physical Chemistry B, 2006, 110(51): 25721-25728.
[51] Huo S J, Li Q X, Yan Y G, et al. Tunable surface enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J]. Journal of Physical Chemistry B, 2005, 109(33): 15985-15991.
[52] Huang B B, Wang J Y, Huo S J, et al. Facile fabrication of silver nanoparticles on silicon for surface-enhanced infrared and raman analysis[J]. Surface and Interface Analysis, 2008, 40(2): 81-84.
[53] Wang H F, Yan Y G, Hu S J, et al. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications[J]. Electrochimica Acta, 2007, 52(19): 5950-5957.
[54] Wang J Y, Peng B, Xie H N, et al. In situ ATR-FTIR spectroscopy on Ni-P alloy electrodes[J]. Electrochimica Acta, 2009, 54(6): 1834-1841.
[55] Wang C, Peng B, Xie H N, et al. Facile fabrication of Pt, Pd and Pt-Pd alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis[J]. Journal of Physical Chemistry C, 2009, 113(31): 13841-13846.
[56] Martin H B, Morrison P W. Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry[J]. Electrochemical and Solid State Letters, 2001, 4(4): E17-E20.
[57] Adzic R R, Shao M H, Liu P. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. Journal of the American Chemical Society, 2006, 128(23): 7408-7409.
[58] Xue X K, Liu J H, Wang J Y, et al. Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes[J]. Analytical Chemistry, 2008, 80(1): 166-171.
[59] Ohman M, Persson D, Leygraf C. In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water andelectrolyte[J]. Progress in Organic Coatings, 2006, 57(1): 78-88.
[60] Ulrich R. Theory of the prism-film coupler by plane-wave analysis[J]. Journal of the Optical Society of America, 1970, 60(10): 1337-1350.
[61] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition, 2006, 45(6): 981-985.
[62] Chen Y X, Ye S, Heinen M, et al. Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.
[63] Liao L W, Liu S X, Tao Q A, et al. A method for kinetic study of methanol oxidation at Pt electrodes by electrochemical in situ infrared spectroscopy[J]. Journal of Electroanalytical Chemistry, 2011, 650(2): 233-240.
[64] Heinen M, Chen Y X, Jusys Z, et al. In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transport conditions - a novel tool for electrocatalytic reaction studies[J]. Electrochimica Acta, 2007, 52(18): 5634-5643.
[65] Zhang H X, Wang S H, Jiang K, et al. In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH[J]. Journal of Power Sources, 2012, 199: 165-169.
[66] Wang J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. Journal of Physical Chemistry C, 2009, 113, 19: 8366-8372.
[67] Peng B, Wang H F, Liu Z P, et al. Combined surface-enhanced infrared spectroscopy and first-principles study on electro-oxidation of formic acid at Sb-modified Pt electrodes[J]. Journal of Physical Chemistry C, 2010, 114(7): 3102-3107.
[68] Peng B, Wang J Y, Zhang H X, et al. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid[J]. Electrochemistry Communications, 2009, 11(4): 831-833.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.