•  
  •  
 

Corresponding Author

Yun-feng ZHANG(zhangyf329@gmail.com);
De-li WANG(wangdl81125@hust.edu.cn)

Abstract

Proton exchange membrane (PEM) is one of the key components in PEM fuel cells, which possesses the function of separating the cathode and anode, affording proton transport channels and preventing fuel permeability. The property of PEM significantly influences the performance and service life of fuel cells. Nowadays, the commercially used Nafion membranes have the shortcomings of serious fuel permeability, low proton conductivity at elevated temperature and high price, which limits the rapid development of PEM fuel cells. Therefore, it seems to be urgent to develop novel PEMs with low cost and good comprehensive properties. Polymeric proton exchange membrane is an important developing direction in the research field of PEMs. This review focuses on the recent progresses in polymeric proton exchange membrane from the perspective of molecular structure. The effects of main backbones, side chains and crosslinking networks on the membrane properties, such as phase separation, proton conductivity, stability and cell performance, are analyzed. The existing problems in molecular structure design of polymeric PEMs are also discussed. Finally, an outlook for future developing directions in polymeric proton exchange membrane applied in fuel cells is presented. By comparing the effect of different structures of polymeric PEMs on their properties, it is concluded that the property of polymeric PEMs can be improved by the following three strategies: (1) Preparing block copolymer or locally and densely sulfonated polymers. The method is beneficial for obtaining high proton conductivity by adjusting the structure of main backbones. (2) Grafting functional hydrophilic or hydrophobic side chains. By using the high mobility of side chains, obvious phase separation of PEMs can be obtained as well as high proton conductivity. Polymers containing hydrophobic side chains are widely utilized as anion exchange membranes, however, the studies in polymers containing hydrophobic side chains as PEMs are still few up to now. (3) Preparing fully crosslinking PEMs. The formed crosslinking networks guarantee high chemical and dimensional stabilities of PEMs, which is profitable for the long-time running of PEM fuel cells. The work aims to provide available guidance for the synthesis of novel polymeric PEMs and promote their practical applications.

Graphical Abstract

Keywords

fuel cell, polymeric proton exchange membrane, molecular structure, phase separation, proton conductivity

Publication Date

2020-02-28

Online Available Date

2019-02-19

Revised Date

2019-02-16

Received Date

2018-12-17

References

[1]Cai Z X( 蔡聿星), Liu S S( 刘闪闪), Fu N( 付念 ), et al. Research progress on high-temperature proton exchange membranes[J]. Materials Review( 材料导报), 2016,30(6):57-62.

[2]Kim D J, Jo M J, Nam S Y . A review of polymer-nanocomposite electrolyte membranes for fuel cell application[J]. Journal of Industrial and Engineering Chemistry, 2015,21:36-52.
doi: 10.1016/j.jiec.2014.04.030 URL

[3]Liu X P, Zhang Y F, Deng S F , et al. Semi-interpenetrating polymer network membranes from SPEEK and BPPO for high concentration DMFC[J]. ACS Applied Energy Materials, 2018,1(10):5463-5473.

[4]Devanathan R . Recent developments in proton exchange membranes for fuel cells[J]. Energy & Environmental Science, 2008,1(1):101-119.

[5]Liu X P, Zhang Y F, Chen Y Z , et al. A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells[J]. Journal of Membrane Science, 2017,544:58-67.
doi: 10.1016/j.memsci.2017.09.013 URL

[6]Yu J R( 于景荣), Xing D M( 邢丹敏), Liu F Q( 刘富强 ), et al. Research progress on proton exchange membranes of fuel cells[J]. Journal of Electrochemistry( 电化学), 2001,7(4):385-395.

[7]Wu K( 吴魁), Xie D L( 解东来 ). Research progress in high temperature proton exchange membranes[J]. Chemical Industry Engineering Progress( 化工进展), 2012,31(10):2202-2220.

[8]Xu F, Mu S C . Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2014,14(2):1169-1180.
doi: 10.1166/jnn.2014.9131 URL

[9]He G W, Li Z, Zhao J , et al. Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives[J]. Advanced Materials, 2015,27(36):5280-5295.
doi: 10.1002/adma.201501406 URL pmid: 26270555

[10]Li C C, Yang Z H, Liu X P , et al. Enhanced performance of sulfonated poly(ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs)[J]. International Journal of Hydrogen Energy, 2017,42(47):28567-28577.
doi: 10.1016/j.ijhydene.2017.09.166 URL

[11]Yu J R( 于景荣), Yi B L( 衣宝廉), Han M( 韩明 ), et al. High performance proton exchange membrane fuel cells[J]. Journal of Electrochemistry( 电化学), 1999,5(4):448-454.

[12]Ran J, Wu L, He Y B , et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017,522:267-291.
doi: 10.1016/j.memsci.2016.09.033 URL

[13]Rambabu G, Nagaraju N, Bhat S D . Functionalized fullerene embedded in Nafion matrix: A modified composite membrane electrolyte for direct methanol fuel cells[J]. Chemical Engineering Journal, 2016,306:43-52.
doi: 10.1016/j.cej.2016.07.032 URL

[14]Zou M J, Fang J H, Liu J H , et al. Synjournal and preparation of sulfonated hyperbranched poly(arylene ether sulfone)/poly(ether sulfone) blend membranes for proton exchange membranes[J]. Solid State Ionics, 2012,220:23-31.
doi: 10.1016/j.ssi.2012.05.020 URL

[15]Zheng P L, Liu J C, Liu X B , et al. Cross-linked sulfonated poly(arylene ether nitrile)s with high selectivity for proton exchange membranes[J]. Solid State Ionics, 2017,303:126-131.
doi: 10.3389/fchem.2020.00056 URL pmid: 32133339

[16]Carbone A, Gaeta M, Romeo A , et al. Porphyrin/sPEEK membranes with improved conductivity and durability for PEFC technology[J]. ACS Applied Energy Materials, 2018,1(4):1664-1673.
doi: 10.1021/acsaem.8b00126 URL

[17]Zhang H W( 张宏伟), Shen P K( 沈培康 ). Progress of polymer electrolyte membranes for fuel cells[J]. Scientia Sinica Chimica( 中国科学), 2012,42(7):954-982.

[18]Schuster M, Araujo C C, Atanasov V , et al. Highly sulfonated poly(phenylene sulfone): Preparation and stability issues[J]. Macromolecules, 2009,42(8):3129-3137.
doi: 10.1021/ma900333n URL

[19]Feng S, Savage J, Voth G A . Effects of polymer morphology on proton solvation and transport in proton-exchange membranes[J]. The Journal of Physical Chemistry C, 2012,116(36):19104-19116.
doi: 10.1021/jp304783z URL

[20]Sun Y Y( 孙媛媛), Qu S G( 屈树国), Li J L( 李建隆 ). Research progress of the sulfonated poly(ether ether ketone)s membranes for proton exchange membrane fuel cell[J]. Chemical Industry Engineering Progress( 化工进展), 2016,35(9):2850-2860.
doi: 10.16085/j.issn.1000-6613.2016.09.029 URL

[21]Yan X M, Zheng W J, Ruan X H , et al. The control and optimization of macro/micro-structure of ion conductive membranes for energy conversion and storage[J]. Chinese Journal of Chemical Engineering, 2016,24(5):558-571.
doi: 10.1016/j.cjche.2016.03.003 URL

[22]Liu X( 刘旭), Wu J T( 吴俊涛), Huo J B( 霍江贝 ), et al. Effect of conducting channels microstructure in proton exchange membrane on the performance of fuel cells[J]. Process in Chemistry( 化学进展), 2014,27(4):395-403.

[23]Zhang Y J, Miyake J P, Akiyama R , et al. Sulfonated phenylene/quinquephenylene/perfluoroalkylene terpolymers as proton exchange membranes for fuel cells[J]. ACS Applied Energy Materials, 2018,1(3):1008-1015.
doi: 10.1021/acsaem.7b00162 URL

[24]Shahgaldi S, Alaefour I, Li X G . The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability[J]. Applied Energy, 2018,217:295-302.

[25]Liu X P, Yang Z H, Zhang Y F , et al. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application[J]. International Journal of Hydrogen Energy, 42(15):10275-10284.

[26]Li N W, Guiver M D . Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014,47(7):2175-2198.

[27]Li J, Xu G X, Luo X Y , et al. Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application[J]. Applied Energy, 2018,213:408-414.

[28]Zarrin H, Higgins D, Jun Y , et al. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2011,115(42):20774-20781.

[29]Mikhailenko S D, Robertson G P, Guiver M D , et al. Properties of PEMs based on cross-linked sulfonated poly-(ether ether ketone)[J]. Journal of Membrane Science, 2006,285(1/2):306-316.

[30]Heo Y, Im H, Kim J . The effect of sulfonated graphene oxide on Sulfonated Poly(ether ether ketone) membrane for direct methanol fuel cells[J]. Journal of Membrane Science, 2013,425:11-22.

[31]Dai W J, Shen Y, Li Z H , et al. SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery[J]. Journal of Materials Chemistry A, 2014,2(31):12423-12432.

[32]Jiang Z Q, Zhao X S, Fu Y Z , et al. Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells[J]. Journal of Materials Chemistry, 2012,22(47):24862-24869.

[33]Li C C, Liu X P, Zhang Y F , et al. Fabrication of sulfonated poly(ether ether ketone)/sulfonated fully aromatic poly-amide composite membranes for direct methanol fuel cells (DMFCs)[J]. Energy Technology, 2018,7(1):1-10.

[34]Matsumoto K, Higashihara T, Ueda Mitsuru . Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membrane[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2009,47(13):3444-3453.

[35]Gahlot S, Sharma P P, Kulshrestha V , et al. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application[J]. ACS Applied Materials & Interfaces, 2014,6(8):5595-5601.
doi: 10.1021/am5000504 URL pmid: 24697540

[36]Xie H X, Tao D, Xiang X Z , et al. Synjournal and properties of highly branched star-shaped sulfonated block poly-(arylene ether)s as proton exchange membranes[J]. Journal of Membrane Science, 2015,473:226-236.

[37]Huang Y C, Tai R H, Lee H F , et al. Synjournal of highly sulfonated poly(arylene ether) containing multiphenyl for proton exchange membrane materials[J]. International Journal of Polymer Science, 2016: 6545362.

[38]Sumner M J, Harrison W L, Weyers R M , et al. Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles[J]. Journal of Membrane Science, 2004,239(2):199-211.

[39]Zhang Y F, Ting J W Y, Rohan R , et al. Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide[J]. Journal of Materials Science, 2014,49(9):3442-3450.

[40]Li J, Cai W W, Zhang Y F , et al. Novel polyamide proton exchange membranes with Bi-functional sulfonimide bridges for fuel cell applications[J]. Electrochimica Acta, 2015,151:168-176.

[41]Ma L Y, Cai W W, Li J , et al. A high performance poly-amide-based proton exchange membrane fabricated via construction of hierarchical proton conductive channels[J]. Journal of Power Sources, 2016,302:189-194.

[42]Li J, Cai W W, Ma L Y , et al. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane[J]. Chemical Communications, 2015,51(30):6556-6559.
doi: 10.1039/c4cc09420d URL pmid: 25767828

[43]Li J, Cai W W, Zhang Y F , et al. 3D-branched rigid-flexible hybrid sulfonated polyamide for proton exchange membranes (PEMs) in fuel cell applications[J]. Energy Technology, 2015,3(2):155-161.

[44]Higashihara T, Matsumoto K, Ueda M . Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells[J]. Polymer, 2009,50(23):5341-5357.

[45]Wang C Y, Shin D W, Lee S Y , et al. A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer[J]. Journal of Materials Chemistry, 2012,22(48):25093-25101.

[46]Park C H, Lee C H, Guiver M D , et al. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. Progress in Polymer Science, 2011,36(11):1443-1498.

[47]Li J, Cai W W, Zhang Y F , et al. Rigid-flexible hybrid proton-exchange membranes with improved water-retention properties and high stability for fuel cells[J]. Energy Technology, 2014,2(8):685-691.

[48]Bai H, Ho W S W . New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells[J]. Journal of Membrane Science, 2008,313(1/2):75-85.

[49]Hu H, Liu W, Yang L , et al. Sulfonated poly(fluorenyl ether ketone) ionomers containing aliphatic functional segments for fuel cell applications[J]. International Journal of Hydrogen Energy, 2012,37(5):4553-4562.

[50]He Q Y, Xu T, Qian H D , et al. Enhanced proton conductivity of sulfonated poly(p-phenylene-co-aryl ether ketone) proton exchange membranes with controlled microblock structure[J]. Journal of Power Sources, 2015,278:590-598.

[51]Tian S H, Meng Y Z, Hay A S . Membranes from poly-(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups[J]. Macromolecules, 2009,42(4):1153-1160.
doi: 10.1021/ma802456m URL

[52]Lee H S, Roy A, S.Badami A , et al. Synjournal and characterization of sulfonated poly(arylene ether) polyimide multiblock copolymers for proton exchange membranes[J]. Macromolecular Research, 2007,15(2):160-166.
doi: 10.1007/BF03218768 URL

[53]Chen Y, Guo R L, Lee C H , et al. Partly fluorinated poly-(arylene ether ketone sulfone)hydrophilic-hydrophobic multiblock copolymers for fuel cell membranes[J]. International Journal of Hydrogen Energy, 2012,37(7):6132-6139.
doi: 10.1016/j.ijhydene.2011.06.139 URL

[54]Roy A, Hickner M A, Yu X , et al. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes[J]. Journal of Polymer Science: Part B: Polymer Physics, 2006,44(16):2226-2239.

[55]Elabd Y A, Hickner M A . Block copolymers for fuel cells[J]. Macromolecules, 2011,44(1):1-11.

[56]Roy A, Yu X, Dunn S , et al. Influence of microstructure and chemical composition on proton exchange membrane properties of sulfonated fluorinated, hydrophilic hydrophobic multiblock copolymers[J]. Journal of Membrane Science, 2009,327(1/2):118-124.

[57]Kang K, Kim D . Comparison of proton conducting polymer electrolyte membranes prepared from multi-block and random copolymers based on poly(arylene ether ketone)[J]. Journal of Power Sources, 2015,281:146-157.

[58]Pan H Y, Chen S X, Jin M , et al. Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes[J]. Ionics, 2018,24(6):1629-1638.
doi: 10.1016/j.bios.2008.08.032 URL pmid: 18829300

[59]Xu P Y, Zhou K, Han G L , et al. Effect of fluorene groups on the properties of multiblock poly(arylene ether sulfone)s-based anion-exchange membranes[J]. ACS Applied Materials & Interfaces, 2014,6(9):6776-6785.
doi: 10.1021/am5017599 URL pmid: 24712319

[60]Miyatake K, Bae B, Watanabe M . Fluorene-containing cardo polymers as ion conductive membranes for fuel cells[J]. Polymer Chemistry, 2011,2(9):1919-1929.
doi: 10.1039/c1py00103e URL

[61]Nakagawa T, Nakabayashi K, Higashihara T , et al. A high performance polymer electrolyte membrane based on sulfonated poly(ether sulfone) with binaphthyl units[J]. Journal of Materials Chemistry, 2010,20(32):6662-6667.
doi: 10.1039/c5tb00957j URL pmid: 32262802

[62]Miyatake K, Zhou H, Watanabe M . Proton conductive polyimide electrolytes containing fluorenyl groups: synjournal, properties, and branching effect[J]. Macromolecules 2004,37(13):4956-4960.

[63]Miyatake K, Chikashige Y., Watanabe M . Novel sulfonated poly(arylene ether): A proton conductive polymer electrolyte designed for fuel cells[J]. Macromolecules, 2003,36(26):9691-9693.

[64]Wang C Y, Shin D W, Lee So Young , et al. A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer[J]. Journal of Materials Chemistry, 2012,22(48):25093-25101.

[65]Ghosh A, Banerjee S . Sulfonated fluorinated-aromatic polymers as proton exchange membranes[J]. E-Polymers, 2014,14:4.

[66]Seo D W, Lim Y D, Lee S H , et al. Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell[J]. Electrochimica Acta, 2012,86(S1):352-359.

[67]Miyake J, Taki R, Mochizuki T , et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells[J]. Science Advances, 2017,3:10.
doi: 10.1126/sciadv.aao0476 URL pmid: 29075671

[68] Qi Z G( 漆志刚), Gong C L( 宫琛亮), Liang Y( 梁宇 ), et al. Highly proton-conductive sulfonated aromatic polymers for medium-temperature proton exchange membrane fuel cells[J]. Progress in Chemistry( 化学进展), 2013,25(12):2103-2111.

[69] Ono H, Kimura T, Takano A , et al. Robust anion conductive polymers containing perfluoroalkylene and pendant ammonium groups for high performance fuel cells[J]. Journal of Materials Chemistry A, 2017,5(47):24804-24812.

[70] Wang C Y, Li N W, Shin D W , et al. Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes[J]. Macromolecules, 2011,44(18):7296-7306.

[71] Yao Z L, Zhang Z H, Hu M , et al. Perylene-based sulfonated aliphatic polyimides for fuel cell applications: Performance enhancement by stacking of polymer chains[J]. Journal of Membrane Science, 2018,547:43-50.

[72] Tadavani K F, Abdolmaleki A, Molavian M R , et al. A promising proton-exchange membrane: high efficiency in low humidity[J]. ACS Applied Energy Materials, 2018,1(6):2464-2473.[73] Wang C Y, Lee S Y, Shin D W , et al. Proton-conducting membranes from poly(ether sulfone)s grafted with sulfoalkylamine[J]. Journal of Membrane Science, 2013,427:443-450.

[74] Nguyen M D T, Yang S, Kim D . Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application[J]. Journal of Power Sources, 2016,328:355-363.

[75] Pang J H, Zhang H B, Li X F , et al. Poly(arylene ether)s with pendant sulfoalkoxy groups prepared by direct copolymerization method for proton exchange membranes[J]. Journal of Power Sources, 2008,184(1):1-8.

[76] Pang J H, Zhang H B, Li X F , et al. Novel wholly aromatic sulfonated poly(arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials[J]. Macromolecules, 2007,40:9435-9442.

[77] Zhang Y F, Li C C, Liu X P , et al. Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity[J]. RSC Advances, 2016,6(83):79593-79601.

[78] Norsten T B, Guiver M D, Murphy J , et al. Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): Improving PEM properties through rational design[J]. Advanced Functional Materials, 2006,16(14):1814-1822.

[79] Zheng J F, Bi W H, Dong X , et al. High performance tetra-sulfonated poly(p-phenylene-co-aryl ether ketone) membranes with microblock moieties for passive direct methanol fuel cells[J]. Journal of Membrane Science, 2016,517:47-56.

[80] Pang J H, Jin X, Wang Y , et al. Fluorinated poly(arylene ether ketone) containing pendent hexasulfophenyl for proton exchange membrane[J]. Journal of Membrane Science, 2015,492:67-76.

[81] Chang Y, Mohanty A D, Smedley S B , et al. Effect of superacidic side chain structures on high conductivity aromatic polymer fuel cell membranes[J]. Macromolecules, 2015,48(19):7117-7126.
doi: 10.1021/acs.macromol.5b01739 URL

[82] Pan J, Chen C, Li Y , et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014,7(1):354-360.
doi: 10.1021/acsami.5b09920 URL pmid: 26645427[83] Ingratta M, Jutemar E P, Jannasch P . Synjournal, nanostructures and properties of sulfonated poly(phenylene oxide) bearing polyfluorostyrene side chains as proton conducting membranes[J]. Macromolecules, 2011,44(7):2074-2083.

[84] Yang Y, Lu F, Gao X P , et al. Effect of different ion-aggregating structures on the property of proton conducting membrane based on polyvinyl alcohol[J]. Journal of Membrane Science, 2015,490:38-45.

[85] Hou H Y, Di Vona M L, Knauth P . Building bridges: Crosslinking of sulfonated aromatic polymers—A review[J]. Journal of Membrane Science, 2012,423:113-127.

[86] Hao J K, Jiang Y Y, Gao X Q , et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018,548:1-10.
doi: 10.1016/j.memsci.2017.10.062 URL

[87] Li C C, Zhang Y F, Liu X P , et al. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. Journal of Materials Science, 2017,53(7):5501-5510.

[88] Hao J K( 郝金凯), Jing Y Y( 姜永燚 ). Preparations and properties of polybenzimidazole/polyvinylbenzyl cross-linked composite membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Electrochemistry( 电化学), 2015,21(5):441-448.

[89] Wu H L, Ma C M, Li C H , et al. Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane[J]. Journal of Membrane Science, 2006,280(1/2):501-508.

[90] Fu Y Z, Manthiram A, Guiver M D . Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells[J]. Electrochemistry Communications, 2006,8(8):1386-1390.

[91] Zuo Z, Zhao X, Manthiram A . High-performance blend membranes composed of an amphoteric copolymer containing supramolecular nanosieves for direct methanol fuel cells[J]. RSC Advances, 2013,3(19):6759-6762.

[92] Xu J M, Cheng H L, Ma L , et al. Construction of a new continuous proton transport channel through a covalent crosslinking reaction between carboxyl and amino groups[J]. International Journal of Hydrogen Energy, 2013,38(24):10092-10103.

[93] Sahu A K, Selvarani G, Pitchumani S , et al. PVA-PSSA membrane with interpenetrating networks and its methanol crossover mitigating effect in DMFCs[J]. Journal of The Electrochemical Society, 2008,155(7):686-695.

[94] Li H T, Zhang G, Wu J , et al. A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2010,195(24):8061-8066.
doi: 10.1016/j.jpowsour.2010.06.106 URL

[95] Merle G, Ioana F C, Demco D E , et al. Friedel-crafts crosslinked highly sulfonated polyether ether ketone (SPEEK) membranes for a vanadium/air redox flow battery[J]. Membranes, 2013,4(1):1-19.
doi: 10.3390/membranes4010001 URL pmid: 24957118

[96] Fang C, Julius D, Tay S W , et al. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications[J]. The Journal of Physical Chemistry B, 2012,116(22):6416-6424.
doi: 10.1021/jp2081353 URL pmid: 22594641

[97] Deivanayagam P, Ramamoorthy A R . Sulfonated poly(ether ether ketone) and poly(ethylene glycol) diacrylate based semi-interpenetrating network membranes for fuel cells[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012,49(3):191-200.

[98] Chikh L, Delhorbe V, Fichet O . (Semi-)Interpenetrating polymer networks as fuel cell membranes[J]. Journal of Membrane Science, 2011,368(1/2):1-17.
doi: 10.1021/jp2081353 URL pmid: 22594641

[99] Chen C M, Chen B X, Hong R D . Preparation and properties of alkaline anion exchange membrane with semi-interpenetrating polymer networks based on poly-(vinylidene fluoride-co-hexafluoropropylene)[J]. Journal of Applied Polymer Science, 2017,135(5):45775.
doi: 10.1002/app.45775 URL

[100] Liu X P, Zhang Y F, Deng S F , et al. Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell[J]. Chinese Chemical Letters, 2018,30(2):299-304.

[101] Chang Z, Pu H, Zhao Z , et al. Preparation and characterization of semi-IPN fluorine containing polybenzimidazole/nafion composite membrane for fuel cells[J]. Fuel Cells, 2013,13(6):1186-1195.

[102] Pan H Y, Pu H T, Jin M , et al. Semi-interpenetrating polymer networks based-on end-group crosslinked fluorine-containing polyimide via click chemistry[J]. Electrochimica Acta, 2013,89:577-584.

[103] Zhou B X, Pu H T, Pan H Y , et al. Proton exchange membranes based on semi-interpenetrating polymer networks of Nafion ® and poly(vinylidene fluoride) via radiation crosslinking [J]. International Journal of Hydrogen Energy, 2011,36(11):6809-6816.

[104] Liu X P, Zhang Y F, Chen Y Z , et al. Investigation of diamine cross-linker on semi-IPNs of BPPO/SPEEK membranes for direct methanol fuel cell[J]. Energy Technology, 2018,6(11):2264-2272.
doi: 10.1038/s41386-018-0144-3 URL pmid: 30054583

[105] Wu X M, He G H, Li X C , et al. Improving proton conductivity of sulfonated poly(ether ether ketone) proton exchange membranes at low humidity by semi-interpenetrating polymer networks preparation[J]. Journal of Power Sources, 2014,246:482-490.
doi: 10.1016/j.jpowsour.2013.07.108 URL

[106] Kanakasabai P, Deshpande A P, Varughese S . Novel polymer electrolyte membranes based on semi-interpenetrating blends of poly(vinyl alcohol) and sulfonated poly(ether ether ketone)[J]. Journal of Applied Polymer Science, 2013,127(3):2140-2151.
doi: 10.1002/app.37749 URL

[107] Mikhailenko S D, Wang K P, Kaliaguine S , et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)[J]. Journal of Membrane Science, 2004,233(1/2):93-99.
doi: 10.1016/j.memsci.2004.01.004 URL

[108] Cha M S, Lee J Y, Kim T H , et al. Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly(phenylene ether)-based short hydrophilic block for use in electrochemical applications[J]. Journal of Membrane Science, 2017,530:73-83.
doi: 10.1016/j.memsci.2017.02.015 URL

[109] Liu C P, Dai C A, Chao C Y , et al. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells[J]. Journal of Power Sources, 2014,249:285-298.
doi: 10.1016/j.jpowsour.2013.10.117 URL

[110] Lee S Y, Kang N R, Shin D W , et al. Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer[J]. Energy & Environmental Science, 2012,5(12):9795-9802.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.