•  
  •  
 

Corresponding Author

Na HAN(hanna@suda.edu.cn);
Yan-guang LI(yanguang@suda.edu.cn)

Abstract

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode and ion exchange membrane. A brief perspective is offered at the end for the possible future research directions in this emerging field.

Graphical Abstract

Keywords

CO2 reduction, electrocatalysis, flow cell, current density

Publication Date

2020-08-28

Online Available Date

2020-07-06

Revised Date

2020-05-20

Received Date

2020-05-05

References

[1] Gattuso J P, Magnan A, Billé R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015,349(6243):47221-47223.

[2] Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(6):1704-1709.
URL pmid: 19179281

[3] Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy & Environmental Science, 2010,3(1):43-81.

[4] Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016,28(18):3423-3452.
doi: 10.1002/adma.201504766 URL pmid: 26996295

[5] Ager J W, Lapkin A A. Chemical storage of renewable energy[J]. Science, 2018,360(6390):707-708.
doi: 10.1126/science.aat7918 URL pmid: 29773731

[6] Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
doi: 10.1039/c3cs60323g URL pmid: 24186433

[7] Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Advanced Energy Materials, 2020,10(11):1902338.

[8] Wu J H, Huang Y, Ye W, et al. CO2 reduction: from the electrochemical to photochemical approach[J]. Advanced Science, 2017,4(11):1700194.
URL pmid: 29201614

[9] Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013,42(6):2423-2436.
doi: 10.1039/c2cs35360a URL pmid: 23232552

[10] Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015,6(20):4073-4082.

[11] Lu Q, Rosen J, Jiao F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015,7(1):38-47.

[12] Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017,56(38):11326-11353.
doi: 10.1002/anie.201612214 URL pmid: 28168799

[13] Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582.

[14] He J F, Johnson N J J, Huang A X, et al. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018,11(1):48-57.
doi: 10.1002/cssc.201701825 URL pmid: 29205925

[15] Wang Y H, Liu J l, Wang Y F, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43):UNSP 1701809.
doi: 10.1002/smll.201700368 URL pmid: 28524361

[16] Jones J P, Prakash G S, Olah G A. Electrochemical CO2 reduction: recent advances and current trends[J]. Israel Journal of Chemistry, 2014,54(10):1451-1466.
doi: 10.1002/ijch.201400081 URL

[17] Ringe S, Clark E L, Resasco J, et al. Understanding cation effects in electrochemical CO2 reduction[J]. Energy & Environmental Science, 2019,12(10):3001-3014.

[18] Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction[J]. Chem, 2017,3(4):652-664.

[19] Han N, Wang Y, Yang H, et al. Ultrathin bismuth nano-sheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate[J]. Nature Com-munications, 2018,9(1):1320.

[20] Yang H, Han N, Deng J, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Advanced Energy Materials, 2018,8(35):1801536.

[21] Yang H, Huang Y, Deng J, et al. Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters[J]. Journal of Energy Chemistry, 2019,37:93-96.

[22] Han N, Wang Y, Deng J, et al. Self-templated synjournal of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. Journal of Materials Chemistry A, 2019,7(3):1267-1272.

[23] Zhang X R (张旭锐), Shao X L (邵晓玲), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425.

[24] Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), et al. Copper-based compounds for electrochemical reduction of carbon dioxide[J]. Journal of Electrochemistry (电化学), 2019,25(4):426-444.

[25] Zhou R (周睿), Han N (韩娜), Li Y G (李彦光). Recent advances in bismuth-based CO2 reduction electrocatalysts[J]. Journal of Electrochemistry (电化学), 2019,25(4):445-454.

[26] Salvatore D A, Weekes D M, He J, et al. Electrolysis of Gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154.

[27] Weekes D M, Salvatore D A, Reyes A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018,51(4):910-918.
doi: 10.1021/acs.accounts.8b00010 URL pmid: 29569896

[28] Sun Z Y, Ma T, Tao H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017,3(4):560-587.

[29] Lu X, Leung D Y, Wang H, et al. Electrochemical reduction of carbon dioxide to formic acid[J]. ChemElectroChem。 2014,1(5):836-849.

[30] Gupta N, Gattrell M, MacDougall B, Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions[J]. Journal of Applied Electrochemistry, 2006,36(2):161-172.

[31] Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453.

[32] Jouny M, Lv J J, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis[J]. Nature Chemistry, 2019,11(9):846-851.
URL pmid: 31444485

[33] Tan Y C, Lee K B, Song H, et al. Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction[J]. Joule, 2020,4(5):1104-1120.

[34] Merino Garcia I, Albo J, Irabien A. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles[J]. Nanotechnology, 2017,29(1):014001.
doi: 10.1088/1361-6528/aa994e URL pmid: 29119948

[35] Dewulf D W, Bard A J. The electrochemical reduction of CO2 to CH4 and C2H4 at Cu/Nafion electrodes (solid polymer electrolyte structures)[J]. Catalysis Letters, 1988,1(1/3):73-79.

[36] Hori Y, Ito H, Okano K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003,48(18):2651-2657.

[37] Aeshala L M, Uppaluri R, Verma A. Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte[J]. Physical Chemistry Chemical Physics, 2014,16(33):17588-17594.
doi: 10.1039/c4cp02389g URL pmid: 25025524

[38] Pǎtru A, Binninger T, Pribyl B, et al. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature[J]. Journal of The Electrochemical Society, 2019,166(2):F34-F43.

[39] Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016,1(6):1149-1153.

[40] McDonald M B, Ardo S, Lewis N S, et al. Use of bipolar membranes for maintaining steady state pH gradients in membrane-supported, solar-driven water splitting[J]. Che-mSusChem, 2014,7(11):3021-3027.

[41] Reiter R S, White W, Ardo S. Communication-electrochemical characterization of commercial bipolar membranes under electrolyte conditions relevant to solar fuels technologies[J]. Journal of The Electrochemical Society, 2016,163(4):H3132-H3134.

[42] Vargas Barbosa N M, Geise G M, Hickner M A, et al. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells[J]. ChemSus-Chem, 2014,7(11):3017-3020.

[43] Chen C, Kotyk J F K, Sheehan S W, Progress toward commercial application of electrochemical carbon dioxide reduction[J]. Chem, 2018,4(11):2571-2586.

[44] Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Co-mmunications, 2019,10(1):2807.

[45] Jiang K, Sandberg R B, Akey A J, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction[J]. Nature Catalysis, 2018,1(2):111-119.

[46] Jhong H R M, Tornow C E, Smid B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. ChemSusChem, 2017,10(6):1094-1099.
doi: 10.1002/cssc.201600843 URL pmid: 27791338

[47] Liang C, Kim B, Yang S, et al. High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles[J]. Journal of Materials Chemistry A, 2018,6(22):10313-10319.

[48] Kopljar D, Wagner N, Klemm E. Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes[J]. Chemical Engineering & Technology, 2016,39(11):2042-2050.

[49] Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
doi: 10.1126/science.aas9100 URL pmid: 29773749

[50] Hoang T T, Verma S, Ma S, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J]. Journal of the American Chemical Society, 2018,140(17):5791-5797.
doi: 10.1021/jacs.8b01868 URL pmid: 29620896

[51] Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol[J]. ACS Catalysis, 2017,7(12):8594-8604.

[52] Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017,139(1):47-50.
doi: 10.1021/jacs.6b10740 URL pmid: 27958727

[53] Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
doi: 10.1126/science.aax4608 URL pmid: 31346062

[54] Del Castillo A, Alvarez Guerra M, Solla Gullón J, et al. Sn nanoparticles on gas diffusion electrodes: Synjournal, characterization and use for continuous CO2 electroreduction to formate[J]. Journal of CO2 Utilization, 2017,18:222-228.

[55] De Arquer F P G, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2[J]. Science, 2020,367(6478):661-666.
doi: 10.1126/science.aay4217 URL pmid: 32029623

[56] Lv J J, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018,30(49):1803111.

[57] Ma W C, Xie S J, Liu T T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020,3(6):478-487.

[58] Li F, Thevenon A, Rosas Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020,577(7791):509-513.
doi: 10.1038/s41586-019-1782-2 URL pmid: 31747679

[59] Yin Z L, Peng H Q, Wei X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019,12(8):2455-2462.

[60] Ren S, Joulie D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
doi: 10.1126/science.aax4608 URL pmid: 31346062

[61] Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019,3(1):265-278.

[62] Gabardo C M, O’Brien C P, Edwards J P, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019,3(11):2777-2791.
doi: 10.1016/j.joule.2019.07.021 URL

[63] Wang X, Wang Z Y, de Arquer FPG, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020,5(6):478-486.

[64] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019,4(9):776-785.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.