•  
  •  
 

Corresponding Author

Feng Yu(yufeng05@mail.ipc.ac.cn);
Bin Dai(db_tea@shzu.edu.cn)

Abstract

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free energy change was the rate determining step for ORR process with the 4e mechanism, where the value of the Cu(111)/N-C(-0.39 eV) was lower than that of the N-C(-0.26 eV). The Cu/N-C exhibited superior onset and half-wave potentials (0.96 V and 0.84 V, respectively) in alkaline media(0.1 mol·L-1 KOH), all of which are much better than those measured for N-C and commercial Pt/C. Furthermore, the Cu/N-C showed superior methanol crossover avoidance and oxygen reduction stability.

Graphical Abstract

Keywords

Cu/N-C, chitosan, biomass resource, electrochemical catalyst, oxygen reduction reaction, carbon-bath method

Publication Date

2021-12-28

Online Available Date

2021-02-22

Revised Date

2021-02-18

Received Date

2020-07-24

References

[1] Lu X F, Xia B Y, Zang S Q, Lou X W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 59(12): 4634-4650.
doi: 10.1002/anie.v59.12 URL

[2] Mamtani K, Jain D, Dogu D, Gustin V, Gunduz S, Co A C, Ozkan U S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media[J]. Appl. Catal. B - Environ., 2018, 220: 88-97.
doi: 10.1016/j.apcatb.2017.07.086 URL

[3] Jia Q Y, Zhao Z P, Cao L, Li J K, Ghoshal S, Davies V, Stavitski E, Attenkofer K, Liu Z Y, Li M F, Duan X F, Mukerjee S, Mueller T, Huang Y. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles[J]. Nano Lett., 2018, 18(2): 798-804.
doi: 10.1021/acs.nanolett.7b04007 URL

[4] Wang Y Q, Yu F, Zhu M Y, Ma C H, Zhao D, Wang C, Zhou A M, Dai B, Ji J Y, Guo X H. 3 N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(5): 2011-2017.
doi: 10.1039/C7TA08607E URL

[5] Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y, Li Y D. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design[J]. Chem, 2019, 5(6): 1486-1511.
doi: 10.1016/j.chempr.2019.03.002 URL

[6] Sun X, Atiyeh H K, Li M X, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review[J]. Bioresource Technol., 2020, 295: 122252.
doi: 10.1016/j.biortech.2019.122252 URL

[7] Kim C, Dionigi F, Beermann V, Wang X L, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2 RR)[J]. Adv. Mater., 2018, 31(SI): 1805617.
doi: 10.1002/adma.v31.31 URL

[8] Chen M J, Hwang S, Li J Z, Karakalos S, Chen K, He Y H, Mukherjee S, Su D, Wu G. Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts[J]. Nanoscale, 2018, 10(36): 17318-17326.
doi: 10.1039/C8NR05888A URL

[9] Wei Q L, Zhang G X, Yang X H, Chenitz R, Barham D, Yang L J, Ye S Y, Knights S, Sun S H. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl Mater. Inter., 2017, 9(42): 36944-36954.
doi: 10.1021/acsami.7b12666 URL

[10] Asset T, Chattot R, Fontana M, Mercier-Guyon B, Job N, Dubau L, Maillard F. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles[J]. ChemPhysChem, 2018, 19(13): 1552-1567.
doi: 10.1002/cphc.v19.13 URL

[11] Yang H, Ko Y, Lee W, Zuttel A, Kim W. Nitrogen-doped carbon black supported Pt-M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Mater. Today Energy, 2019, 13: 374-381.

[12] Zhang G R, Wollner S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions[J]. Appl. Catal. B - Environ., 2018, 222: 26-34.
doi: 10.1016/j.apcatb.2017.09.066 URL

[13] Wang N N, Li Y Q, Guo Z L, Li H, Hayase S, Ma T L. Minute quantities of hexagonal nanoplates PtFe alloy with facile operating conditions enhanced electrocatalytic activity and durability for oxygen reduction reaction[J]. J. Alloy. Compd., 2018, 752: 23-31.
doi: 10.1016/j.jallcom.2018.04.181 URL

[14] Yu F, Liu M C, Ma C H, Di L B, Dai B, Zhang L L. A review on the promising plasma-assisted preparation of Electrocatalysts[J]. Nanomaterials, 2019, 9(10): 1436.
doi: 10.3390/nano9101436 URL

[15] Martinez U, Babu S K, Holby E F, Chung H T, Yin X, Zelenay P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Adv., Mater., 2019, 31(SI): 1806545.
doi: 10.1002/adma.v31.31 URL

[16] Cai P W, Ci S Q, Zhang E H, Shao P, Cao C S, Wen Z H. FeCo alloy nanoparticles confined in carbon layers as high-activity and robust cathode catalyst for Zn-Air battery[J]. Electrochim. Acta, 2016, 220: 354-362.
doi: 10.1016/j.electacta.2016.10.070 URL

[17] Zhao X T, Abbas S C, Huang Y Y, Lv J Q, Wu M X, Wang Y B. Robust and highly active FeNi@NCNT nanowire arrays as integrated air electrode for flexible solid-state rechargeable Zn-Air batteries[J]. Adv. Mater., Interfaces, 2018, 5(9): 1701448.
doi: 10.1002/admi.v5.9 URL

[18] Guan B Y, Lu Y, Wang Y, Wu M H, Lou X W. Porous iron-cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal-organic framework hybrids for oxygen reduction[J]. Adv. Funct. Mater., 2018, 28(10): 1706738.
doi: 10.1002/adfm.v28.10 URL

[19] Xiong Y, Yang Y, DiSalvo F J, Abruna H D. Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells[J]. J. Am. Chem. Soc., 2019, 141(27): 10744-10750.
doi: 10.1021/jacs.9b03561 pmid: 31246446

[20] Yin D D, Han C, Bo X J, Liu J, Guo L P. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions[J]. J. Colloid Interface Sci., 2019, 533: 578-587.
doi: 10.1016/j.jcis.2018.08.118 URL

[21] Yan X Y, Tong X L, Zhang Y F, Han X D, Wang Y Y, Jin G Q, Qin Y, Guo X Y. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Chem. Commun., 2012, 48(13): 1892-1894.
doi: 10.1039/c2cc17537a URL

[22] Cracknell J A, Vincent K A, Armstrong F A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis[J]. Chem. Rev., 2008, 108(7): 2439-2461.
doi: 10.1021/cr0680639 pmid: 18620369

[23] Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases[J]. Chem. Rev., 1996, 96(7): 2563-2605.
pmid: 11848837

[24] Zhao Y Y, Chu Y, Ju X P, Zhao J S, Kong L Q, Zhang Y, Carbon-supported copper-based nitrogen-containing sup-ramolecule as an efficient oxygen reduction reaction catalyst in neutral medium[J]. Catalysts, 2018, 8(2): 53.
doi: 10.3390/catal8020053 URL

[25] Pan Z F, An L, Zhao T S, Tang Z K. Advances and challenges in alkaline anion exchange membrane fuel cells[J]. Prog. Energy Combust. Sci., 2018, 66: 141-175.
doi: 10.1016/j.pecs.2018.01.001 URL

[26] Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46(1): 1-27.
doi: 10.1016/S1381-5148(00)00038-9 URL

[27] Qu J, Hu Q L, Shen K, Zhang K, Li Y L, Li H, Zhang Q R, Wang J Q, Quan W Q. The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism[J]. Carbohyd. Res., 2011, 346(6): 822-827.
doi: 10.1016/j.carres.2011.02.006 URL

[28] Wang L, Liu M C, Wang G, Dai B, Yu F, Zhang J L. An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance[J]. J. Alloy. Compd., 2019, 776: 43-51.
doi: 10.1016/j.jallcom.2018.10.214 URL

[29] Liu M C, Guo X H, Hu L B, Yuan H F, Wang G, Dai B, Zhang L L, Yu F. Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaction[J]. ChemNanoMat, 2018, 5(2): 187-193.

[30] Yu H Y, Fisher A, Cheng D J, Cao D P. Cu,N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016, 8(33): 21431-21439.
doi: 10.1021/acsami.6b04189 URL

[31] Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem. Soc. Rev., 2015, 44(8): 2168-2201.
doi: 10.1039/C4CS00484A URL

[32] Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
doi: 10.1126/science.aad0832 URL

[33] Borghei M, Lehtonen J, Liu L, Rojas O J. Advanced bio-mass-derived electrocatalysts for the oxygen reduction reaction[J]. Adv. Mater., 2018, 30(24): 1703691.
doi: 10.1002/adma.v30.24 URL

[34] Yang L, Zeng X F, Wang D, Cao D P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery[J]. Energy Stor. Mater., 2018, 12: 277-283.

[35] Rinaudo M. Chitin and chitosan: Properties and applications[J]. Prog. Polym. Sci., 2006, 31(7): 603-632.
doi: 10.1016/j.progpolymsci.2006.06.001 URL

[36] Huang C L, Zhang H Y, Sun Z Y, Liu Z M. Chitosan-mediated synjournal of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. Sci. China. Chem., 2010, 53(7): 1502-1508.
doi: 10.1007/s11426-010-4004-1 URL

[37] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review[J]. Prog. Polym. Sci., 2005, 30(1): 71-109.
doi: 10.1016/j.progpolymsci.2004.12.001 URL

[38] Huang J Y, Liang Y R, Hu H, Liu S M, Cai Y J, Dong H W, Zheng M T, Xiao Y, Liu Y L. Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synjournal and its application in superior supercapacitors[J]. J. Mater. Chem. A, 2017, 5(47): 24775-24781.
doi: 10.1039/C7TA08046H URL

[39] Hu L B, Wei Z X, Yu F, Yuan H F, Liu M C, Wang G, Peng B H, Dai B, Ma J M. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst[J] J. Energy. Chem., 2019, 39: 152-159.
doi: 10.1016/j.jechem.2019.01.018 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.