The electrochemical behavior of spinel LiMn_(2)O_(4)electrode in ionic liquid electrolyte was investigated by using cyclic voltammetry, galvanostatic charge-discharge and ACimpedance techniques. The results reveal that the spinel LiMn_(2)O_(4)can be effectively cycled in electrolyte based on the ionic liquid with discharge capacity of 108.2mAh/g and Coulombic efficiency of more than 90% in the first cycle at room temperature. Temperature and current density play an important role in the electrode performances. The activation energy for lithium ion transfer through interface between the electrode and the electrolyte was evaluated by AC impedance spectroscopy. The high activation energy accounts for the poor cell performance at low temperature and for its poor rate capability.


Lithium ion batteries, Room temperature ionic liquid, Spinel LiMn_2O_4, AC impedance

Publication Date


Online Available Date


Revised Date


Received Date



[1]B lanchard L A,Hancu D,Beckm an E J,et al.G reenprocessing using ion ic liqu id and CO2[J].Nature,1999,99:28~29.
[2]Sun J,Forsyth M,M acFarlane D R.Room temperatureion ic liqu id based the quaternary ammon ium ion[J].J.Phys.Chem.B,1998,102:8 858~8 864.
[3]W elton T.Room temperature ion ic liqu id:new solventfor organ ic synthesis[J].Chem.Rev.,1999,99:2 071~2 093.
[4]Fu ller J,Carlin C T,Osteryoung R A.The room tem-perature ion ic liqu id 1-ethyl-3-m athylim idazazolium tet-rafluoroborate:electrochem ical coup les and physicalproperties[J].J.E lectrochem.Soc.,1997,144:3 881~3 885.
[5]Noda A,Hayam izu K,W atanabe M.Pu lsed-grad ientsp in-echo H and F NMR ion ic d iffusion coeffic ient,vis-cosity and ion ic conductivity of non-chloroalum inateroom temperature ion ic liqu id[J].J.Phys.Chem.B,2001,105:4 603~4 610.
[6]W ilkes J S,ZaworotkoM J.A ir and water stab le 1-eth-yl-3-m ethylim idazolium based ion ic liqu ids[J].J.Chem.Soc.,Chem.Commun.,1992,965~967.
[7]Sakaabe H,M aatsumoto H.N-m ethyl-N-propylp iperi-d in ium b is(trifluorom ethanesu lfonyl)im ide-novel elec-trolyte base for L i batteries[J].E lectrochem.Com-mun.,2003,5:594~598.
[8]Fung Y S,Zhou R Q.Room temperature molten salt asm ed ium for lith ium battery[J].J.Power Sources,1999,81:891~895.
[9]Hu Y,L iH,Huang X,et al.Novel room temperaturemolten salt electrolyte based on L iTFSI and acetam idefor lith ium batteries[J].E lectrochem istry commun ica-tions,2004,6:28~32.
[10]Nakagawa H,Izuch i S,Kuwana K,et al.L iqu id andpolym er gel electrolytes for lith ium batteries composedroom temperature molten salt doped by lith ium salt[J].J.E lectrochem.Soc.,2003,150:A 695~700.
[11]Katayam a Y,YukumotoM,M iura T.E lectrochem icalintercalation of lith ium into graph ite in room tempera-ture molten salts contain ing ethylene carbonate[J].E lelctrochem.Solid-State Lett.,2003,6:A 96~97.
[12]U i K,Ish ikawa K,M inam i T,et al.Developm ent ofthe nonflamm ab le lith ium secondary battery w ith anamb ient temperature molten salt electrolyte[A].IMLB12 M eeting[C].Nara:The E lectrochem ical Soc iety,Inc.,2004.360.
[13]Caja J,Dunstan T D,Ryan D M,et al.App lication ofion ic liqu ids as electrolytes in lith ium rechargeab lecells[A].12 th International Symposium on MoltenSalts[C].Hawaii:The E lectrochem ical Soc iety,1999.2 252.
[14]Aosh im a T,Okahara K,K iyohara C,et al.M echa-n ism s of m anganese sp inels d issolution and capac ityfade at h igh temperature[J].J.Power Sources,2001,97~98:377~382.
[15]Takahash iM,Tob ish im a S,Tabe i K,et al.Reactionbehavior of cathode m aterials for rechargeab le lith iumbatteries[J].Solid-state Ion ics,2002,148:283~289.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.