Corresponding Author

Shi-gang SUN(sgsun@xmu.edu.cn)


The property of an electrocatalyst depends strongly on its surface structure.The study of surface structure-catalytic functionality is the base of design and preparation of electrocatalysts of high activity,high stability and high selectivity at microstructure level.In this paper,based mainly on our results concering hydrogen and oxygen adsorption-desorption,ethylene glycol oxidation and CO2 reduction,the research progresses in tuning the surface structure and property of electrocatalysts are summarized.This paper overviews firstly the cyclic voltammetric characteristics,electrocatalytic properties of platinum single crystal planes lying on different crystallographic zones of the unit stereographic triangle of face-centered cubic(fcc) metals.Next,the innovation of electrochemical methods to control the surface structure and growth of metal nanocrystal is introduced.And finally,the synthesis and property of Pt and Fe nanocrystal catalysts of open surface structure with high catalytic activity and high stability are reviewed.


Pt, Fe, single crystal, open surface structure, electrocatalysts, shape and surface strueture controlled synthesis

Publication Date


Online Available Date


Revised Date


Received Date



[1]Somorjai G A.Chemistry in two dimensions:surfaces[M].Ithaca,New York:Cornell University Press,1981.
[2]Wieckowski A(Ed).Interfacial electrochemistry:theo-ry,experiment,and applications[M].New York:Marcel Dekker,Inc.1999.
[3]Tian N,Zhou Z Y,Sun S G.Platinum metal catalystsof high-index surfaces:from single-crystal planes toelectrochemically shape-controlled nanoparticles[J].JPhys Chem C,2008,112(50):19801-19817.
[4]Stamenkovic VR,Markovic NM,Ross P N.Structure-relationships in electrocatalysis:oxygen reduction andhydrogen oxidation reactions on Pt(111)and Pt(100)in solutions containing chloride ions[J].J ElectroanalChem,2001,500:44-51.
[5]Perez J,Villullas HM,Gonzalez E R.Structure sensi-tivity of oxygen reduction on platinum single crystal e-lectrodes in acid solutions[J].J Electroanal Chem,1997,435:179-187.
[6]Davies J C,Hayden B E,Pegg D J,et al.The electro-oxidation of carbon monoxide on ruthenium modified Pt(111)[J].Surf Sci,2002,496:110-120.
[7]Zhou Z Y,Tian N,Sun S G,et al.In situ rapid-scantime-resolved microscope FTIR spectrochemistry:studyof the dynamic processes of methanol oxidation on ananostructured Pt electrode[J].J Electroanal Chem,2004,573:111-119.
[8]Yang Y Y,Sun S G,Gu Y J,et al.Surface modifica-tion and electrocatalytic properties of Pt(100),Pt(110),Pt(320)and Pt(331)electrodes with Sb to-wards HCOOH oxidation[J].Electrochim Acta,2001,46:4339-4348.
[9]Sun S G,Zhou Z Y.Surface processes and kinetics ofCO2reduction on Pt(100)electrodes of different sur-face structure in sulfuric acid solutions[J].PhysChem Chem Phys,2001,3:3277-3283.
[10]Sun S G,Lin Y.Kinetics of isopropanol oxidation onPt(111),Pt(110),Pt(100),Pt(610)and Pt(211)single crystal electrodes—studies of in situ time-re-solved FTIR spectroscopy[J].Electrochim Acta,1998,44:1153-1162.
[11]Tripkovic A V,Popovic K D,Lovic J D.The influ-ence of the oxygen-containing species on the electrooxi-dation of the C1-C4 alcohols at some platinum singlecrystal surfaces in alkaline solution[J].ElectrochimActa,2001,46:3163-3173.
[12]Sun S G,Yang Y Y.Studies of kinetics of HCOOHoxidation on Pt(100),Pt(110),Pt(111),Pt(510)and Pt(911)single crystal electrodes[J].J Electro-anal Chem,1999,467:121-131.
[13]Xia Y N,Xiong Y J,Lim B,et al.Shape-controlled syn-thesis of metal nanocrystals:simple chemistry meetscomplex physics[J].AngewChem Int Ed,2008,47:2-46.
[14]Ma Y Y,Kuang Q,Jiang Z Y,et al.Synthesis of tris-octahedral gold nanocrystals with exposed high-indexfacets by a facile chemical method[J].Angew ChemInt Ed,2008,120:9033.
[15]Liao HG,Jiang Y X,Sun S G,et al.Shape-controlledsynthesis of gold nanoparticles in deep eutectic solventsfor studies of structure-functionality relationships[J].Angew Chem Int Ed,2008,47:9100-9103.
[16]Tian N,Zhou Z Y,Sun S G,et al.Synthesis of tetra-hexahedral platinum nanocrystals with high-index facetsand high electro-oxidation activity[J].Science,2007,316:732-735.
[17]Chen Y X,Chen S P,Sun S G,et al.Tuning the shapeand catalytic activity of Fe nanocrystals from rhombicdodecahedra and tetragonal bipyramids to cubes byelectrochemistry[J].J Am Chem Soc,2009,131:10860-10862.
[18]Nicholas J F.An atlas of models of crystal surfaces[M].New York:Science Publishers Inc,1965.
[19]Lang B,Joyner R W,Somorjai G A.Lowenergy elec-tron diffraction studies of high index crystal surfaces ofplatinum[J].Surf Sci,1972,30:440-453.
[20]Clavilier J,Faure R,Guinet G,et al.Preparation ofmono-crystalline Pt microelectrodes and electrochemi-cal study of the plane surfaces cut in the direction ofthe(111)and(110)planes[J].J ElectroanalChem,1980,107:205-209.
[21]Clavilier J,Armand D,Sun S G,et al.Electrochemi-cal adsorption behavior of platinum stepped surfaces insulphuric solutions[J].J Electroanal Chem,1986,199:267-277.
[22]Sun Shi-gang,Chen Ai-cheng,Huang Tai-shan,et al.Establishment of a technique for preparing metal singlecrystal electrode and studies on underpotential deposi-tion of Cu2+on Pt(100),Pt(111)and Pt(110)elec-trodes[J].Chemical Journal of Chinese Universities,1992,13:390-391.
[23]Herrero E,Buller L J,Abruna H D.Underpotentialdeposition at single crystal surfaces of Au,Pt,Ag andother materials[J].Chem Rev,2001,101:1897-1930.
[24]Peck W F,Nakahara S.Preparation and electropolis-hing of thin gold disk specimens for transmission-elec-tron-microscope examinations[J].Metallography,1978,11:347-354.
[25]Engelsmann K,Lorenz W J.Underpotential depositionof lead on polycrystalline and single-crystal gold sur-faces 1.Thermodynamics[J].J Electroanal Chem,1980,114:1-10.
[26]Hamelin A,Wagner D,Schimer H,et al.Amodifica-tion of the last step of surface preparation for gold andsilver single-crystal faces[J].J Electroanal Chem,1987,220:155-160.
[27]Yang Yi-yun.The adsorption-desorption of hydrogen onPt single crystal base and stepped crystal plane and ki-netic of HCOOH oxidation[D].Xiamen:Xiamen U-niversity,1997.
[28]Yang Yi-yun.The electrochemical behaviors of Sb irre-versible adsorption on Pt single crystal electrodes andkinetic of HCOOH oxidation[D].Xiamen:XiamenUniversity,2000.
[29]Fan You-jun.Surface structure effects in dissociativeadsorption kinetics and electrocatalytic oxidation of eth-ylene glycol[D].Xiamen:Xiamen University,2005.
[30]Fan Chun-jie.Surface structure effects in electrocataly-sis of CO2reduction on Pt single crystal and Sb modi-fied planes[D].Xiamen:Xiamen University,2008.
[31]Magnussen O M,Hotlos J,Behm R J,et al.An in-si-tu scanning-tunneling-microscopy study of electrochem-ically induced hex←→(1×1)transitions on Au(100)electrodes[J].Surf Sci,1993,296:310-332.
[32]Adzic R R,Tripkovic AV,Ogrady WE.Structural effectsin electrocatalysis[J].Nature,1982,296:137-138.
[33]Motoo S,Furuya N.Effect of terraces and steps in theelectrocatalysis for formic acid oxidation on platinum[J].Ber Bunsenges Phys Chem,1987,91:457-461.
[34]Sun S G,Clavilier J.Electrochemical study on the poi-soning intermediate formed from methanol dissociationat low index and stepped platinum surfaces[J].JElectroanal Chem,1987,236:95-112.
[35]Beden B,Lamy C,Bewick A,et al.Electrosorption ofmethanol on a platinum electrode-IR spectroscopic evi-dence for adsorbed CO species[J].J ElectroanalChem,1981,121:343-347.
[36]Fan C J,Fan Y J,Sun S G,et al.Studies of surfaceprocesses of electrocatalytic reduction of CO2on Pt(210),Pt(310)and Pt(510)[J].Science In ChinaSeries B-Chemistry,2007,50(5):593-598.
[37]Chen Ai-cheng,Sun Shi-gang.Dissociative adsorptionof ethylene glycol on Pt single crystal electrode[J].Progress in Natural Science—Communication of StateKey Laboratory,1994,4:823-829.
[38]Fan Y J,Zhou Z Y,Sun S G,et al.Kinetics of disso-ciative adsorption of ethylene glycol on Pt(100)elec-trode surface in sulfuric acid solutions[J].Electro-chimca Acta,2004,49:4659-4666.
[39]Markovic NM,Avramov-Ivic ML,Marinkovic NS,etal.Structural effects in electrocatalysis:Ethylene glycoloxidation on platinum single-crystal surfaces[J].JElectroanal Chem,1991,312(1/2):115-130.
[40]Yang Y Y,Sun S G.Effects of Sb adatoms on kineticsof electrocatalytic oxidation of HCOOH at Sb modifiedPt(100),Pt(111),Pt(110),Pt(320)and Pt(331)surfaces—An energetic modeling and quantitative anal-ysis[J].Journal of Physical Chemistry B,2002,106:12499-12507.
[41]Yang Y Y,Sun S G,Gu Y J,et al.Surface modifica-tion and electrocatalytic properties of Pt(100),Pt(110),Pt(320)and Pt(331)electrodes with Sb to-wards HCOOH oxidation[J].Electrochim Acta,2001,46:4339-4348.
[42]Yang Y Y,Zhou Z Y,Sun S G.In situ FTIR studiesof kinetics of HCOOH oxidation on Pt(110)electrodemodified with antimony adatoms[J].J ElectroanalChem,2001,500(1/2):233-240.
[43]Sun S G,Chen AC,Huang TS,et al.Electrocatalyt-ic properties of Pt(111)、Pt(332)、Pt(331)and Pt(100)single crystal electrodes towards ethylene glycoloxidation in sulphuric acid solutions[J].J ElectroanalChem,1992,340:213-226.
[44]Armand D,Clavilier J.Electrochemical behavior ofthe(110)orientation of a platinum surface in acid me-dium-the role of anions[J].J Electroanal Chem,1989,263:109-126.
[45]Sun S G,Chen A C.Effects of ethylene glycol(EG)concentration and pH of solutions on electrocatalyticproperties of Pt(111)electrode in EG oxidation?Acomparison study with adjacent planes of platinum sin-gle crystal situated in[110]and[011]crystallo-graphic zones[J].Electrochim Acta,1994,39(7):969-973. [46]Fan Y J,Zhou Z Y,Sun S G.In situ time-resolvedFTIRS study of adsorption and oxidation of ethyleneglycol on Pt(100)electrode[J].Chinese ScienceBulletin,2005,50(18):1995-1998. [47]Sun Shi-gang,Clavilier J.The electrocatalytic proper-ties of platinum single crystal(210),(310)and(610)stepped surface in formic acid oxidation[J].Chemical Journal of Chinese Universities,1990,11(9):998-1002. [48]Sun S G.Thse de Doctorat d′Etat[J].UniversitPi-erre et Marie Curie(Paris 6).1986. [49]Tian Na.Electrochemical preparation and high perfor-mance of platinum and palladium nanocatalysts withhigh-index facets[D].Xiamen:Xiamen University,2007. [50]Tian N,Zhou Z Y,Sun S G.Electrochemical prepara-tion of Pd nanorods with high-index facets[J].ChemCommun,2009,11:1502-1504. [51]Zhou Z Y,Tian N,Sun S G,et al.Nanoparticle cata-lysts with high energy surfaces and enhanced activitysynthesized by electrochemical method[J].FaradayDiscussions,2008,140:81-92. [52]Tian N,Zhou Z Y,Sun S G,et al.Electrochemicalpreparation of platinum nanothorn assemblies with highsurface enhanced Raman scattering activity[J].ChemCommun,2006,4090-4092. [53]Pangarov N A,Vitkova S D.Preferred orientation ofelectrodeposited iron crystallites[J].Electrochim Ac-ta,1966,11,1719-1731. [54]Pangarov N A.Preferred orientations in electro-deposi-ted metals[J].J Electroanal Chem,1965,9:70-85. [55]Pangarov N A.On the crystal orientation of electrode-posited metals[J].Electrochim Acta,1964,9:721-726. [56]Chen Yan-xin.Electrochemically shape-controlled syn-thesis of Fe nanoparticles,their structural characteriza-tion and properties[D].Xiamen:Xiamen University,2009. [57]Tohru Watanabe.Nano-plating[M].Translated byChen Zhu-ping,Yang Guang.Beijing:Chemical In-dustry Press,2007. [58]Zhou Shao-min.Metal electrodeposition—Theory andresearch methods[M].Shanghai:Shanghai Scienceand Technology Press,1987.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.