Corresponding Author

Jun CHEN(chenabc@nankai.edu.cn)


First principles calculations play an important role in the study and development of new materials for lithium batteries. In this paper, we review the application of first principles calculations in the design of anode materials, including the modeling of the interaction of lithium in the anode materials, capacity, voltage, electrochemical reaction process, diffusion, rate capability, the relationship between the structure and properties, and the experimental phenomena interpreting. Based on the discussions, we emphasize on the importance of first principles calculations and demonstrate their requirement for further development.

Graphical Abstract


first principles calculations, lithium ion batteries, anode materials

Publication Date


Online Available Date


Revised Date


Received Date



[1] Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials [J]. MRS Bulletin, 2010, 35(9): 693-701.

[2] Meng Y S, Arroyo-de Dompablo M E. First principles computational materials design for energy storage materials in lithium ion batteries [J]. Enery & Environmental Science, 2009, 2(6): 589-609.

[3] Guo Y G(郭玉国), Wang Z L(王忠丽), Wu X L(吴兴隆), et al. Nano/Micro-structured electrode materials for lithium-ion batteries [J]. Journal of Eletrochemistry(电化学), 2010, 16(2): 119-124.

[4] Ai X P(艾新平), Cao Y L(曹余良),Yang H X(杨汉西). Self-activating safety mechanisms for Li-ion batteries [J]. Journal of Eletrochemistry(电化学), 2010, 16(1): 6-10.

[5] Gong Z L, Yang Y. Recent advances in there search of polyanion-type cathode materials for Li-ion batteries [J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.

[6] Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte [J]. Nature Chemistry 2010, 2: 760-765.

[7] Chen J, Cheng F Y. Combination of light weight elements and nanostructured materials for batteries [J]. Accounts of Chemical Research, 2009, 42(6): 713-723.

[8] Armand M, Tarascon J M. Building better batteries [J]. Nature 2008, 451(7179): 652-657.

[9] Wu D H, Zhou Z. Recent progress of computational investigation on anode materials in Li ion batteries [J]. Frontiers of Physics, 2011, 6(2): 197-203.

[10] Zhao J J, Buldum A, Han J, et al. First-principles study of Li-intercalated carbon nanotube ropes [J]. Physical Review Letters, 2000, 85(8): 1706-1709.

[11] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries [J]. Energy & Environmental Science, 2009, 2: 638-654.

[12] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters, 2008, 8(8): 2277-2282.

[13] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries [J]. Journal of Power Sources, 2011, 196: 13-24.

[14] Huggins R A. Lithium alloy negative electrodes [J]. Journal of Power Sources, 1999, 81: 13-19.

[15] Tao Z L(陶占良), Wang H B(王洪波), Chen J(陈军). Si-based materials as the anode of lithium-ion batteries [J]. Progress in Chemistry(化学进展), 2011, 23(2/3): 318-327.

[16] Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires [J]. Nano Letters, 2007, 8 (1): 307-309.

[17] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochimica Acta, 1999, 45: 31-50.

[18] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active centre [J]. Journal of Power Sources, 2000, 88(2): 278-281.

[19] Fransson L M L, Vaughey J T, Benedek R, et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: An in situ X-ray diffraction study [J]. Electrochemistry Communications, 2001, 3(7): 317-323.

[20] Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-B nanowires [J]. Advanced Materials, 2005, 17(7): 862-865.

[21] Ferg E, Gummow R J, Kock A D, et al. Spinel anodes for lithium-ion batteries [J]. Journal of the Electrochemical Society, 1994, 141(11): L147-L150.

[22] Colbow K M, Dahn J R, Haering R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4 [J]. Journal of Power Sources, 1989, 26(3-4): 397-402.

[23] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496-499.

[24] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.

[25] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li [J]. Journal of the Electrochemical Society, 2002, 149(9): A1212-A1217.

[26] Bruce P G, Scrosati B and Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946.

[27] Boyanov S, Bernardi J, Bekaert E, et al. P-Redox mechanism at the origin of the high lithium storage in NiP2-based batteries [J]. Chemistry of Materials, 2008, 21(2): 298-308.

[28] Boyanov S, Bernardi J, Gillot F, et al. FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process [J]. Chemistry of Materials, 2006, 18(15): 3531-3538.

[29] Zhou Z, Zhao J J, Gao X P, et al. Do composite single-walled nanotubes have enhanced capability for lithium storage? [J]. Chemistry of Materials, 2005, 17: 992-1000.

[30] Wang X, Zeng Z, Ahn H., et al. First-principles study on the enhancement of lithium storage capacity in boron doped graphene [J]. Applied Physics Letters, 2009, 95(18): 183103.

[31] Zhong Z, Ouyang C, Shi S, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries [J]. ChemPhysChem, 2008, 9(14): 2104-2108.

[32] Armstrong A R, Arrouvel C, Gentili V, et al. Lithium coordination sites in LixTiO2(B): A structural and computational Study [J]. Chemistry of Materials, 2010, 22(23): 6426-6432.

[33] Kim H, Chou C Y, Ekerdt J G, et al. Structure and properties of Li?Si alloys: A first-Principles study [J]. Journal of Physical Chemistry C, 2011, 115(5): 2514-2521.

[34] Chou C Y, Kim H and Hwang G S. First-principles study of structure, energetics, and properties of Li–M (M = Si, Ge, Sn) alloys [J]. Journal of Physical Chemistry C, 2011, 115(40): 20018-20026.

[35] Goodenough J B and Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22: 587-603.

[36] Peng B, Cheng F Y, Tao Z L, et al. Lithium transport at silicon thin ?lm: Barrier for high-rate capability anode [J]. The Journal of Chemical Physics, 2010, 133: 034701.

[37] Meunier V, Kephart J, Roland C, et al. Ab initio investigations of lithium diffusion in carbon nanotube systems [J]. Physical Review Letters, 2002, 88(7): 075506.

[38] Gao B, Bower C, Lorentzen J D, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes [J]. Chemical Physics Letters, 2000, 327(1/2): 69-75.

[39] Uthaisar C and Barone V. Edge effects on the characteristics of Li diffusionin graphene [J]. Nano Letters, 2010, 10: 2838-2842.

[40] Arrouvel C, Parker S C and Islam M S. Lithium insertion and transport in the TiO2-B anode material: A computational Study [J]. Chemistry of Materials, 2009, 21(20): 4778-4783.

[41] Courtney I A, Tse J S, Mao O, et al. Ab initio calculation of the lithium-tin voltage profile [J]. Physical Review B, 1998, 58(23): 15583.

[42] Doe R. E, Persson K A, Meng Y S, et al. First-principles investigation of the Li?Fe?F phase Diagram and equilibrium and nonequilibrium conversion reactions of Iron fluorides with lithium [J]. Chemistry of Materials, 2008, 20(16): 5274-5283.

[43] Matsuno S, Noji M, Kashiwagi T, et al. Construction of the ternary phase diagram for the Li?Cu?Sb system as the anode material for a lithium ion battery [J]. Journal of Physical Chemistry C, 2007, 111(20): 7548-7553.

[44] Mason T H, Liu X, Hong J, et al. Novel Conversion reactions for high-capacity Li-ion battery anodes in the Li–Mg–B–N–H system [J]. Journal of Physical Chemistry C, 2011, 115(33): 16681-16687.

[45] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation [J]. Journal of Power Sources, 2010, 195(15): 5062-5066.

[46] Zhao K, Wang W L, Gregoire J, et al. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study [J]. Nano Letters, 2011, 11(7): 2962-2967.
[47] Ceder G, Chiang Y M, Sadoway D. R., et al. Identification of cathode materials for lithium batteries guided by first-principles calculations [J]. Nature, 1998, 392(6677): 694-696.
[48] Peng Z, Shi Z, Liu M. Mesoporous Sn-TiO composite electrodes for lithium batteries [J]. Chemical Communications, 2000 (21): 2125-2126.
[49] Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries [J]. Electrochimica Acta, 2002, 47(21): 3491-3507.
[50] Koudriachova M V, Harrison N M. Li sites and phase stability in TiO2-anatase and Zr-doped TiO2-anatase [J]. Journal of Materials Chemistry, 2006, 16(20): 1973-1977.
[51] Imai Y, Watanabe A. Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle pseudopotential calculation [J]. Journal of Alloys and Compounds, 2007, 439(1/2): 258-267.
[52] Persson K, Hinuma Y, Meng S Y. Thermodynamic and kinetic properties of the Li-graphite system from ?rst-principles calculations [J]. Physical Review B, 2010, 82(12): 125416.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.