Corresponding Author

N. Bartlett Philip(pnb@soton.ac.uk)


Mesoporous Rh films were deposited onto platinum microelectrodes from the H1 lyotropic liquid crystalline phase of C12EO8 (octaethyleneglycol monododecyl ether). The electrodes show well defined voltammetry for the oxidation and the reduction of hydrogen peroxide at low concentrations (<10 mmol•L-1) with excellent stability for operation at neutral pH. Based on the hysteresis in the current and the potential dependence the oxidation of hydrogen peroxide occurs through a CEE mechanism involving Rh(OH)3 on the mesoporous Rh electrode surface. At higher hydrogen peroxide concentrations the current reaches a plateau that is due to either saturation of the binding sites for hydrogen peroxide or limitation of the reaction due to acidification of the solution within the pores. For the thin films (below 200 nm) the hydrogen peroxide calibration curves we fitted to a one dimensional model for diffusion and reaction within the pores.

Graphical Abstract


hydrogen peroxide, rhodium, microelectrode, nanoporous, lyotropic liquid crystal, templated electrodeposition

Publication Date


Online Available Date


Revised Date


Received Date



[1] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases[J]. Science, 1997, 278(5339): 838-840.

[2] Evans S A G, Elliott J M, Andrews L M, et al. Detection of hydrogen peroxide at mesoporous platinum microelectrodes[J]. Analytical Chemistry, 2002, 74(6): 1322-1326.

[3] Chen W, Cai S, Ren Q Q, et al. Recent advances in electrochemical sensing for hydrogen peroxide: A review[J]. Analyst, 2012, 137(1): 49-58.

[4] Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J]. Analytical and Bioanalytical Chemistry, 2005, 382(1): 12-21.

[5] Prodromidis M I, Karayannis M I. Enzyme based amperometric biosensors for food analysis[J]. Electroanalysis, 2002, 14(4): 241-261.

[6] Li X Z, Liu H S. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment[J]. Environmental Science & Technology, 2005, 39(12): 4614-4620.

[7] Armstrong F A, Wilson G S. Recent developments in faradaic bioelectrochemistry[J]. Electrochimica Acta, 2000, 45(15/16): 2623-2645.

[8] Nowall W B, Kuhr W G. Detection of hydrogen peroxide and other molecules of biological importance at an electrocatalytic surface on a carbon fiber microelectrode[J]. Electroanalysis, 1997, 9(2): 102-109.

[9] Aoki K, Ishida M, Tokuda K, et al. Electrode-kinetics of the oxidation of hydrogen peroxide at pretreated glassy carbon and carbon fiber electrodes[J]. Journal of Electroanalytical Chemistry, 1988, 251(1): 63-71.

[10] Prabhu V G, Zarapkar L R, Dhaneshwar R G. Electrochemical studies of hydrogen peroxide at a platinum disc electrode[J]. Electrochimica Acta, 1981, 26(6): 725-729.

[11] Liu H Y, Ying T L, Sun K, et al. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode[J]. Analytica Chimica Acta, 1997, 344(3): 187-199.

[12] Horrocks B R, Schmidtke D, Heller A, et al. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces[J]. Analytical Chemistry, 1993, 65(24): 3605-3614.

[13] Ruzgas T, Csoregi E, Emneus J, et al. Peroxidase-modified electrodes: Fundamentals and application[J]. Analytica Chimica Acta, 1996, 330(2/3): 123-138.

[14] Karyakin A A. Prussian Blue and its analogues: Electrochemistry and analytical applications[J]. Electroanalysis, 2001, 13(10): 813-819.

[15] E. N. K. Wallace, in PhD thesis, University of Southampton, 1997.

[16] D. A. Cook, in PhD thesis, University of Southampton, 2005.

[17] Zhang Y, Wilson G S. Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors[J]. Journal of Electroanalytical Chemistry, 1993, 345(1/2): 253-271.

[18] Gorton L. A carbon electrode sputtered with palladium and gold for the amperometric detection of hydrogen peroxide[J]. Analytica Chimica Acta, 1985, 178(2): 247-253.

[19] Johnston D A, Cardosi M F, Vaughan D H. The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes - manufacture and chemical characterization[J]. Electroanalysis, 1995, 7(6): 520-526.

[20] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism[J]. Electrochimica Acta, 1998, 43(5/6): 579-588.

[21] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential[J]. Electrochimica Acta, 1998, 43(14/15): 2015-2024.

[22] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature[J]. Electrochimica Acta, 1999, 44(14): 2455-2462.

[23] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence[J]. Electrochimica Acta, 1999, 44(25): 4573-4582.

[24] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride[J]. Electrochimica Acta, 2000, 45(21): 3573-3579.

[25] Elliott J M, Birkin P R, Bartlett P N, et al. Platinum microelectrodes with unique high surface areas[J]. Langmuir, 1999, 15(22): 7411-7415.

[26] Han J H, Boo H, Park S, et al. Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor[J]. Electrochimica Acta, 2006, 52(4): 1788-1791.

[27] Miscoria S A, Barrera G D, Rivas G A. Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rhodinized glassy carbon and screen printed electrodes[J]. Sensors and Actuators B-Chemical, 2006, 115(1): 205-211.

[28] Rodríguez M C, Rivas G A. An enzymatic glucose biosensor based on the codeposition of rhodium, iridium, and glucose oxidase onto a glassy carbon transducer[J]. Analytical Letters, 2001, 34(11): 1829-1840.

[29] Bartlett P N, Marwan J. Preparation and characterization of H-1-e rhodium films[J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 73-79.

[30] Vogel A I, Bassett J. Vogel's textbook of quantitative inorganic analysis: Including elementary instrumental analysis[M]. English Language Book Society, 1986.

[31] Jerkiewicz G, Borodzinski J J. Studies of formation of very thin oxide-films on polycrystalline rhodium electrodes - application of the Mott-Cabrera theory[J]. Langmuir, 1993, 9(8): 2202-2209.

[32] Jerkiewicz G, Borodzinski J J. Relation between the surface-states of oxide-films at Rh electrodes and kinetics of the oxygen evolution reaction[J]. Journal of The Chemical Society-Faraday Transactions, 1994, 90(24): 3669-3675.

[33] Peuckert M. A comparison of the thermally and electrochemically prepared oxidation adlayers on rhodium - chemical nature and thermal stability[J]. Surface Science, 1984, 141(2/3), 500-514.

[34] Florit M I, Bolzan A E, Arvia A J. Reactions involving H, OH and O species on rhodium in H2SO4?12H2O and HClO4?5.5H2O in the range 198-298 K[J]. Journal of Electroanalytical Chemistry, 1995, 394(1/2): 253-262.

[35] Katsounaros I, Schneider W B, Meier J C, et al. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism[J]. Physical Chemistry Chemical Physics, 2012, 14(20): 7384-7391.

[36] Vanstroebiezen S A M, Everaerts F M, Janssen L J J, et al. Diffusion coefficients of oxygen, hydrogen peroxide and glucose in a hydrogel[J]. Analytica Chimica Acta, 1993, 273(1/2): 553-560.

[37] Amatore C. Theoretical trends of diffusion and reaction into tubular nano- and mesoporous structures: General physicochemical and physicomathematical modeling[J]. Chemistry-A European Journal, 2008, 14(18): 5449-5464.

[38] Amatore C, Oleinick A, Klymenko O V, et al. Theory and simulation of diffusion-reaction into nano- and mesoporous structures. Experimental application to sequestration of mercury(II)[J]. Analytical Chemistry, 2008, 80(9): 3229-3243.

[39] Albery W J, Cass A E G, Shu Z X. Inhibited enzyme electrodes. 1. Theoretical model[J]. Biosensors & Bioelectronics, 1990, 5(5): 367-378.

[40] Albery W J, Cass A E G, Shu Z X. Inhibited enzyme electrodes.2. The kinetics of the cytochrome-oxidase system[J]. Biosensors & Bioelectronics, 1990, 5(5): 379-395.

[41] Albery W J, Cass A E G, Mangold B P, et al. Inhibited enzyme electrodes. 3. A sensor for low-levels of H2S and HCN[J]. Biosensors & Bioelectronics, 1990, 5(5): 397-413.

[42] Bartlett P N, Birkin P R, Wallace E N K. Oxidation of ?-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes[J]. Journal of the Chemical Society-Faraday Transactions, 1997, 93(10): 1951-1960.
[43] Bartlett P N, Simon E. Poly(aniline)-poly(acrylate) composite films as modified electrodes for the oxidation of NADH[J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2599-2606.
[44] Bartlett P N, Wallace E N K. The oxidation of ?-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes Part II. Kinetics of reaction at poly(aniline)-poly(styrenesulfonate) composites[J]. Journal of Electroanalytical Chemistry, 2000, 486(1): 23-31.
[45] Kicela A, Daniele S. Platinum black coated microdisk electrodes for the determination of high concentrations of hydrogen peroxide in phosphate buffer solutions[J]. Talanta, 2006, 68(5): 1632-1639.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.