Corresponding Author

WANG Jiu-Lin


Lithium rich materials xLi2MnO3·(1-x)LiMO2 (0<x<1, M=Mn, Co, Ni) become a hot topic because of their high capacities exceeding 250 mAh·g-1 and low cost. However, the large irreversible capacity during the first cycle, low rate capability and structure collapse during cycling remain impediments in developing these cathodes for applications. The structure analyses and charge/discharge mechanisms for lithium rich materials are currently main research contents. Although whether the lithium rich materials are solid solutions or composite is still controversial, oxygen release mechanism on the first charge 4.5 V plateau of lithium rich materials has come to consistency. Several modifications, such as bulk doping, surface coating and microstructure control, demonstrate promising strategies to obviously improve electrochemical properties. The structure, charge/discharge mechanism, synthesis methods and electrochemical modifications of lithium rich cathode materials are systematically reviewed in this article. Further research aspects of these kinds of materials as cathode materials for lithium ion batteries are also discussed.


lithium ion batteries, cathode material, lithium-rich materials, charge/discharge mechanism, electrochemical modification

Publication Date


Online Available Date


Revised Date


Received Date



[1] Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications[J]. Nano Letters, 2011, 11(2): 414-418.

[2] Jiang K C, Xin S, Lee J S, et al. Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks[J]. Physical Chemistry Chemical Physics, 2012, 14(8): 2934-2939.

[3] Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters, 2010, 10(10): 3852-3856.

[4] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.

[5] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.

[6] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.

[7] Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3[J]. Journal of Power Sources, 2009, 189(1): 798-801.

[8] Lu Z, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of The Electrochemical Society, 2002, 149(6): A778-A791.

[9] Hu S K, Cheng G H, Cheng M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2009, 188(2): 564-569.

[10] Jarvis K A, Deng Z, Allard L F, et al. Atomic structure of a lithium-rich layered oxide material for Lithium-ion batteries: Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16): 3614-3621.

[11] Baren?o J, Balasubramanian M, Kang S H, et al. Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2[J]. Chemistry of Materials, 2011, 23(8): 2039-2050.

[12] Boulineau A, Simonin L, Colin J F, et al. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy[J]. Chemistry of Materials, 2012,
24(18), 3558-3566.

[13] Simonin L, Colin J F, Ranieri V, et al. In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(22): 11316-11322.

[14] West W C, Soler J, Ratnakumar B V. Preparation of high quality layered-layered composite Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling-annealing process[J]. Journal of Power Sources, 2012, 204: 200-204.

[15] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.

[16] Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. Journal of Power Sources, 2009, 191(2): 644-647.

[17] Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1): 84-86.

[18] Wu Y, Manthiram A. High capacity, surface-modified layered Li[Li(1ˆ’x)/3Mn(2ˆ’x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid-State Letters, 2006, 9(5): A221-A224.

[19] Song B, Liu Z, Lai M O, et al. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12875-12883.

[20] Park K S, Benayad A, Park M S, et al. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VOx-impregnated 0.5Li2MnO3-0.5LiNi0.4Co0.2Mn0.4O2 cathode[J]. Chemical Communications, 2010, 46(23): 4190-4192.

[21] Jarvis K A, Deng Z, Allard L F, et al. Understanding structural defects in lithium-rich layered oxide cathodes[J]. Journal of Materials Chemistry, 2012, 22(23): 11550-11555.

[22] Jiang Y, Yang Z, Luo W, et al. Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foam with superior performance for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(30): 14964-14969.

[23] Wang Z(
王昭), Wu F(吴锋), Su Y F(苏岳锋), et al. Preparation and characterization of xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for lithium-ion batteries[J]. Acta Physico-Chimica Sinica(物理化学学报), 2012, 28(4): 823-830.

[24] Liu B, Zhang Q, He S, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4[J]. Electrochimica Acta, 2011, 56(19): 6748-6751.

[25] He W, Qian J, Cao Y, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Advances, 2012, 2(8): 3423-3429.

[26] Croy J R, Kang S H, Balasubramanian M, et al. Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10): 1063-1066.

[27] Lee Y, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material[J]. Nano Letters, 2008, 8(3): 957-961.

[28] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in €˜composite€™ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 6(10): 1085-1091.

[29] Lu Z, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of The Electrochemical Society, 2002, 149(7): A815-A822.

[30] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.

[31] Tran N, Croguennec L, Me?ne?trier M, et al. Mechanisms associated with the €œplateau€ observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system[J]. Chemistry of Materials, 2008, 20(15): 4815-4825.

[32] Hong J, Lim H D, Lee M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in Lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(14): 2692-2697.
[33] Xu B, Fell C R, Chi M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223-2233.
[34] Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2[J]. Journal of Power Sources, 2010, 195(2): 567-573.
[35] Deng Z Q, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of Lithium-rich layered oxide cathodes[J]. The Journal of Physical Chemistry C, 2011, 115(14): 7097-7103.
[36] Tang Z, Wang Z, Li X, et al. Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn0.65(1ˆ’x)Ni0.35(1ˆ’x)]O2 cathode materials for lithium battery batteries[J]. Journal of Power Sources, 2012, 204: 187-192.
[37] Yu H, Zhou H. Initial coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese[J]. Journal of Materials Chemistry, 2012, 22(31): 15507-15510.
[38] Martha S K, Nanda J, Veith G M, et al. Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 216: 179-186.
[39] Liu J, Reeja-Jayan B, Manthiram A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. The Journal of Physical Chemistry C, 2010, 114(20): 9528-9533.
[40] Liu J, Wang Q, Reeja-Jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. Electrochemistry Communications, 2010, 12(6): 750-753.
[41] Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5-yNi0.5-yCo2y]O2[J]. Solid State Ionics, 2009, 180(1): 50-56.
[42] Wu Y, Vadivel Murugan A, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. Journal of The Electrochemical Society, 2008, 155(9): A635-A641.
[43] Liu J, Manthiram A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010, 20(19): 3961-3967.
[44] Deng S N(邓胜男), Shi Z C(施志聪), Zheng J(郑隽), et al. Performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for lithium ion batteries by surface coating[J]. Chinese Journal of Power Sources(电源技术), 2012, 36(4): 463-466.
[45] Sun Y K, Lee M J, Yoon C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9): 1192-1196.
[46] Rosina K J, Jiang M, Zeng D, et al. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(38): 20602-20610.
[47] Wu F, Li N, Su Y, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. Journal of Materials Chemistry, 2012, 22(4): 1489-1497.
[48] Yo C H, Ju J H, Kim G O, et al. C-rate and temperature dependence of electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials before and after Co3(PO4)2 coating[J]. Ionics, 2011, 18(1/2): 19-25.
[49] Ahn D, Koo Y -M, Kim M G, et al. Polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-Ion battery[J]. The Journal of Physical Chemistry C, 2010, 114(8): 3675-3680.
[50] Zhang H Z, Qiao Q, Li G, et al. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery[J]. Journal of Materials Chemistry, 2012, 22(26): 13104-13109.
[51] Abouimrane A, Compton O C, Deng H, et al. Improved rate capability in a high-capacity layered cathode material via thermal reduction[J]. Electrochemical and Solid-State Letters, 2011, 14(9): A126-A129.
[52] Yu D Y W, Yanagida K, Nakamura H. Surface modification of Li-excess Mn-based cathode materials[J]. Journal of The Electrochemical Society, 2010, 157(11): A1177-A1182.
[53] Zheng J, Deng S, Shi Z, et al. The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Journal of Power Sources, 2013, 221: 108-113.
[54] Du K(杜柯), Huang X(黄霞),Yang F(杨菲), et al. Modification of Li[Li0.2Ni0.2Mn0.6]O2 as cathode material for rechargeable lithium batteries by acid-leaching[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2012, 28(5): 983-988.
[55] Wang D P, Belharouak I, Zhou G W, et al. Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Advanced Functional Materials, 2013, 23(8): 1070-1075.
[56] Ko Y N, Kim J H, Lee J K, et al. Electrochemical properties of nanosized LiCrO2·Li2MnO3 composite powders prepared by a new concept spray pyrolysis[J]. Electrochimica Acta, 2012, 69: 345-350.
[57] Martha S K, Nanda J, Veith G M, et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 199: 220-226.
[58] Kim H J, Jung H G, Scrosati B, et al. Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries[J]. Journal of Power Sources, 2012, 203: 115-120.
[59] Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J]. Chemical Communications, 2009, (2): 218-220.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.