Abstract
As a highly-sensitive and non-destructive in situ technique, spectroscopic ellipsometry has been widely applied in corrosion investigation to acquire the dynamic information of the “electrode-medium” interface during corrosion. This paper lays out some representative demonstrations in several established optical models used to interpret data obtained with spectroscopic ellipsometry in corrosion investigation. In addition, the latest trends in development of this technique are analyzed.
Graphical Abstract
Keywords
Spectroscopic ellipsometry, corrosion, interface, optical model
Publication Date
2013-10-28
Online Available Date
2013-08-23
Revised Date
2013-08-23
Received Date
2013-07-26
Recommended Citation
Ling-jie LI, Yu-ling HE, Jing-lei LEI, Sheng tao ZHANG.
Applications of Spectroscopic Ellipsometry in Corrosion Investigation[J]. Journal of Electrochemistry,
2013
,
19(5): 402-408.
DOI: 10.61558/2993-074X.2129
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss5/2
References
[1] Xiao J M (肖纪美). General corrosion-the corrosion and control method[M]. Beijing: Chemical Industry Press(化学工业出版社), 1994: 1
[2] Tompkins H G, Irene E A. Handbook of ellipsometry[M]. New York: William Andrew, Inc., 2005: 1.
[3] Fujiwara H. Spectroscopic ellipsometry: Principles and applications[M]. West Sussex: John Wiley & Sons, Inc., 2007: 1.
[4] Azzam R M A, Bashara N M. Ellipsometry and polarized light[M]. New York: North-Holland Publishing Co., 1977: 270.
[5] Vedam K. Spectroscopic ellipsometry: A historical overview[J]. Thin Solid Films, 1998, 313-314: 1-9.
[6] Lei J L(雷惊雷), Zheng S(郑莎), Li L J(李凌杰), et al. Applications of ellipsometry in corrosion and protection of metals[J]. Corrosion Science and Protection Technology(腐蚀科学与防护技术), 2012, 24(2): 91-94.
[7] Lei J L(雷惊雷), Wu L L(吴良柳), Li L J(李凌杰), et al. Applications of ellipsometry in the investigations of electrode-solution interface[J]. Journal of Electrochemistry(电化学), 2013, 19(1): 29-36.
[8] Campestrini P, Bohm S, Schram T, et al. Study of the formation of chromate conversion coatings on Alclad 2024 aluminum alloy using spectroscopic ellipsometry[J]. Thin Solid Films, 2002, 410(1/2): 76-85.
[9] Franquet A, Terryn H, Vereecken J. Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry[J]. Thin Solid Films, 2003, 441(1/2): 76-84.
[10] Li W(李威), Jin C Y(金承钰). Analytical approach and methods for ellipsommetry on thin film[J]. Chinese Journal of Spectroscopy Laboratory(光谱实验室), 2010, 27(1): 66-76.
[11] Petit J A, Dabosi F. An ellipsometric approach to localized corrosion processes[J]. Corrosion Science, 1980, 20(6): 745-760.
[12] Berlouis L E A, Mamman D A, Azpuru I G. The electrochemical behaviour of copper in alkaline solutions containing fluoride, studied by in situ ellipsometry[J]. Surface Science, 1998, 408(1/3):173-181.
[13] Hara N, Kobayashi Y, Kagaya D, et al. Formation and break down of surface films on magnesium and its alloys in aqueous solutions[J]. Corrosion Science, 2007, 49(1): 166-175.
[14] Ohtsuka T, Hyono A, Sasaki Y. Potential modulation reflectance of passivated type 304 stainless steel in sulfuric acid solution [J]. Electrochimica Acta, 2012, 60(15): 384-391.
[15] Li L J(李凌杰), Lei J L(雷惊雷), He D H(贺东海), et al. Study on corrosion of magnesium alloy in simulated cooling water by means of in situ spectroscopic ellipsometry[J]. Corrosion Science and Protection Technology(腐蚀科学与防护技术), 2009, 21(3): 236-238.
[16] Schaftinghen T V, Joiret S, Deslouis C, et al. In situ raman spectroscopy and spectroscopic ellipsometry analysis of the iron/polypyrrole interface[J]. Journal of Physical Chemistry C, 2007, 111(39): 14400-14409.
[17] Georgiou D, Laskarakis A, Logothetidis S, et al. Optical properties of hybrid polymers as barrier materials [J]. Applied Surface Science, 2009, 255(18): 8023-8029.
[18] Pen C L, Vuilleminb B, Gils S V, et al. In-situ characterisation of organosilane film formation on aluminium alloys by electrochemical quartz crystal microbalance and in-situ ellipsometry[J]. Thin Solid Films, 2005, 483(1/2): 66-73.
[19] Aspnes D E, Theeten J B. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry[J]. Physical Review B, 1979, 20(8):3292-3302.
[20] Zhang X, van den Bos C, Sloof W G. Comparison of the morphology and corrosion performance of Cr(VI)-and Cr(III)-based conversion coatings on zinc[J]. Surface & Coatings Technology, 2005, 199 (1): 92-104.
[21] Lei J L(雷惊雷), Zhang L N(张李娜), Li L J(李凌杰), et al. In situ ellipsometric study on initial stages of porous anodization of aluminum[J]. Acta Physico-Chimica Sinica(物理化学学报), 2010, 26(9): 2392-2396.
[22] Kumar N, Yang Y, Noh W, et al. Titanium diboride thin films by low-temperature chemical vapor deposition from the single source precursor Ti(BH4)3(1,2-dimethoxyethane)[J]. Chemistry of Materials[J], 2007, 19(15): 3802-3807.
[23] Gils S V, Pen C. L, Hubin A, et al. Electropolishing of copper in H3PO4 ex situ and in situ optical characterization[J]. Journal of The Electrochemical Society, 2007, 154(3): C175-C180.
[24] Gray J J, E1 Dasher B S, Orme C A. Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22[J]. Surface Science, 2006, 600(12): 2488-2494.
[25] Zhang S T, Wu F J. Ellipsometric analysis of corrosion behavior of 3C magnesium alloy surface touched by simulated sweat[J]. Surface and Interface Analysis, 2011, 43(3): 752-756.
[26] Selj J, Th?gersen A, Foss S E, et al. Ellipsometric study of the influence of chemical etching on thin porous silicon structures[J]. Thin Solid Films, 2011, 519(9): 2998-3001.
[27] Schaftinghen T V, Pena C L, Terryn H, et al. Investigation of the barrier properties of silanes on cold rolled steel[J]. Electrochimica Acta, 2004, 49(17/18): 2997-3004.
[28] Levin M, Wiklund P, Leygraf C. Bioorganic compounds as copper corrosion inhibitors in hydrocarbon media[J]. Corrosion Science, 2012, 58:104-114.
[29] Saxena A N. Changes in the phase and amplitude of polarized light reflected from a film-covered surface and their relations with the film thickness[J]. Journal of the Optical Society of America, 1965, 55(9):1061-1072.
[30] Nguyen H V, An I, Collins R W. Evolution of the optical functions of thin-film aluminum: A real-time spectroscopic ellipsometry study[J] Physical Review B, 1993, 47(7): 3947-3965.
[31] Hanekamp L J, Lisowski W, Bootsma G A. Spectroscopic ellipsometric investigation of clean and oxygen covered copper single crystal surfaces[J]. Surface Science, 1982, 118(1/2): 1-18.
[32] Sato N, Kudo K, Noda T. Single layer of the passive film on Fe[J].Corrosion Science, 1970, 10(11): 785-794.
[33] Okabe H, Hayakawa M, Matoba J, et al. Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head [J]. Review of Scientific Instruments, 2009, 80(8): 0831041.
[34] Balevicius Z, Vaicikauskas V, Babonas G J. The role of surface roughness in total internal reflection ellipsometry of hybrid systems[J]. Applied Surface Science, 2009, 256(3): 640-644.
[35] Arwin H, Poksinski M, Johansen K. Total internal reflection ellipsometry: Principles and applications[J]. Applied Optics, 2004, 43(15): 3028-3036.
[36] Poksinski M, Dzuho H, Arwin H. Copper corrosion monitoring with total internal reflection ellipsometry[J]. Journal of the Electrochemical Society, 2003, 150(11): B536-B539.
[37] Asinovski L, Beaglehole D, Clarkson M T. Imaging ellipsometry: Quantitative analysis[J]. Physica Status Solidi A, 2008, 205(4): 764-771.
[38] Wurstbauer U, R?ling C, Wurstba U, et al. Imaging ellipsometry of graphene[J]. Applied Physics Letters, 2010, 97(23): 231901-231903.
[39] Zhan Q W, Leger J R. High-resolution imaging ellipsometer[J]. Applied Optics, 2002, 41(22): 4443-4450.
[40] Carnali J O, Lugo G M, Sharma A, et al. Inhomogeneous glass surfaces resulting from rapid forming operations-evidence from differential corrosion[J]. Journal of Non-Crystalline Solids, 2004, 341(1/3): 101-109.
[41] McLaughlin D V P, Pearce J M. Analytical model for the optical functions of indium gallium nitride with application to thin film solar photovoltaic cells[J]. Materials Science and Engineering B, 2012, 177(2): 239-244.
[42] Barshilia H C, Rajam K S. Growth and characterization of chromium oxide coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering[J]. Applied Surface Science, 2008, 255(5): 2925-2931.
[43] Kazansky L P, Kuznetsov Y I, Andreeva N P, et al. Self-assembled monolayers of flufenaminate anions on mild steel surface formed in aqueous solution[J]. Applied Surface Science, 2010, 257(4): 1166-1174.
[44] Narayanan R, Seshadri S K, Kwon T Y, et al. Corrosion of anodic TiO2 coatings on Ti-6Al-4V in simulated body ?uid[J]. Journal of Biomedical Materials Research Part A, 2007, 86(2): 502-509.
[45] Palik E D. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1993: 1.
[46] Hauffman T, Lokeren L V, Willem R, et al. In situ study of the deposition of (ultra)thin organic phosphonic acid layers on the oxide of aluminum[J]. Langmuir, 2012, 28(6): 3167-3173.
[47] Liu Y L, Yu Z F, Zhou S X, et al. Self-assembled monolayers on magnesium alloy surfaces from carboxylate ions[J]. Applied Surface Science, 2006, 252(10): 3818-3827.
[48] Ozkanat O, Salgin B, Rohwerder M, et al. Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy[J]. Journal of Physical Chemistry C, 2012, 116(2): 1805-1811.
[49] Chen Y, Erbe A. In situ spectroscopic ellipsometry during electrochemical treatment of zinc in alkaline carbonate electrolyte[J]. Surface Science, 2013, 607: 39-46.
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons