Corresponding Author

Jian-Jun SUN(jjsun@fzu.edu.cn)


In this paper, a pencil core was used as the substrate for an antimony-film electrode for simultaneous detection of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry (SWASV). With the deposition time of 180 s, the low limit of detection (LOD) for the electrode was determined to be 0.075 ?g?L-1 for Cd(II), while 0.13 ?g?L-1 for Pb(II) with good reproducibility in low pH solutions (pH = 2). The results show a much lower LOD than that of bismuth-film pencil core electrode. Finally, this antimony-film electrode was successfully applied to determine Cd(II) and Pb(II) in tap water.

Graphical Abstract


antimony film electrodes, anodic stripping voltammetry, heavy metal ions, pencil core electrode

Publication Date


Online Available Date


Revised Date


Received Date



[1] Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure-a review of the literature and a risk estimate[J]. Scandinavian Journal of Work Environment & Health, 1998, 24(1): 1-51.
[2] Satarug S, Moore M R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke[J]. Environmental Health Perspectives, 2004, 112(10): 1099-1103.
[3] Wilson M A, Johnston M V, Goldstein G W, et al. Neonatal lead exposure impairs development of rodent barrel field cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5540-5545.
[4] Verstraeten S V, Aimo L, Oteiza P, et al. Aluminium and lead: Molecular mechanisms of brain toxicity[J]. Archives of Toxicology, 2008, 82(11): 789-802.
[5] Ronco A M, Gutierrez Y, Gras N, et al. Lead and arsenic levels in women with different body mass composition[J]. Biological Trace Element Research, 2010, 136(3): 269-278.
[6] Olympio K P, Goncalves C, Gunther W M R, et al. Neurotoxicity and aggressiveness triggered by low-level lead in children: A review[J]. Revista Panamericana De Salud Publica-Pan American Journal of Public Health, 2009, 26(3): 266-275.
[7] Gracia R C, Snodgrass W R. Lead toxicity and chelation therapy[J]. American Journal of Health-System Pharmacy, 2007, 64(1): 45-53.
[8] Krieg E F, Chrislip D W, Brightwell W S. A meta-analysis of studies investigating the effects of lead exposure on nerve conduction[J]. Archives of Toxicology, 2008, 82(8): 531-542.
[9] Hennebruder K, Wennrich R, Mattusch J, et al. Determination of gadolinium in river water by SPE preconcentration and ICP-MS[J]. Talanta, 2004, 63(2): 309-316.
[10] Stosnach H. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF)[J]. Spectrochimica Acta-Part B, 2006, 61(10/11): 1141-1145.
[11] Alexiu V, Vladescu L. The determination of the contamination level with lead and cadmium in sweet food samples by atomic absorption spectrometry with electrothermal atomization[J]. Review Chimica-Bucharest, 2003, 54(7): 557-560.
[12] Beqa L, Singh A K, Khan S A, et al. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples[J]. Acs Applied Materials & Interfaces, 2011, 3(3): 668-673.
[13] Liu L, Huy N L, Wang J X, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes[J]. Electroanalysis, 2011, 115(23): 11348-11354.
[14] Wang J. Analytical electrochemistry, 3rd ed.[M]. Wiley-VCH: Hoboken, NJ, 2006:
[15] Long G G, Freedman L D, Doak G O. Encyclopedia of chemical technology[M]. New York, Wiley, 1978: 912-937.
[16] Pacheco F W, Miguel E M, Ramos G V, et al. Use of hydrogen peroxide to achieve interference-free stripping voltammetric determination of copper at the bismuth-film electrode[J]. Analytica Chimica Acta, 2008, 625(1): 22-27.
[17] Economou A, Voulgaropoulos A. Stripping voltammetry of trace metals at bismuth-film electrodes by batch-injection analysis[J]. Electroanalysis, 2010, 22(13): 1468-1475.
[18] Korolczuk M, Rutyna I, Tyszczuk K. Adsorptive stripping voltammetry of nickel at an in situ plated bismuth film electrode[J]. Electroanalysis, 2010, 22(13): 1494-1498.
[19] Hocevar S B, S?vancara I, Ogorevc B, et al. Antimony film electrode for electrochemical stripping analysis[J]. Analytical Chemistry, 2007, 79(22): 8639-8643.
[20] Wang J, Lu J, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14): 3218-3222.
[21] Wang J, Tian B. Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes[J]. Analytical Chemistry, 1993, 65(11): 1529-1532.
[22] Mikkelsen E, Schrder K H. An oscillating and renewing silver electrode for cadmium and lead detection in differential pulse stripping voltammetry[J]. Electroanalysis, 2001, 13(8/9): 687-692
[23] Nolan M A, Kounaves S P. Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry[J]. Analytical Chemistry, 1999, 71(16): 3567-3573
[24] Tesarova E S, Baldrianova L, Stoces M, et al. Antimony powder-modified carbon paste electrodes for electrochemical stripping determination of trace heavy metals[J]. Electrochimica Acta, 2011, 56(19): 6673-6677.
[25] Toghill K E, Lei X, Gregory G, et al. Electroanalytical determination of cadmium(II) and Lead(II) using an antimony nanoparticle modified boron-doped diamond electrode[J]. Electroanalysis, 2009, 21(10): 1113-1118.
[26] Wang J, Kawde A N, Sahlin E. renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA[J]. Analyst, 2000, 125(1): 5-7.
[27] Kakizaki T, Hasebe K, Fresenius J. Potentiometric stripping determination of heavy metals using a graphite-reinforcement carbon vibrating electrode[J]. Analytical Chemistry, 1998, 360(2): 175-178.
[28] Bond A M, Mahon P J, Schiewe J, et al. An inexpensive and renewable pencil electrode for use in field-based stripping voltammetry[J]. Analytica Chimica Acta, 1997, 345(1/3): 67-74.
[29] Demetriades D, Economou A, Voulgaropoulos A. A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry[J]. Analytica Chimica Acta, 2004, 519(2): 167-172.
[30] Wu S H, Sun J J, Lin Z B, et al. Adsorptive stripping analysis of riboflavin at electrically heated graphite cylindrical electrodes[J]. Electroanalysis, 2007, 19(21): 2251-2257.
[31] Tesarova E, Baldrianova L, Hocevar S B, et al. Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode[J]. Analytica Chimica Acta, 2009, 54(5): 1506-1510.
[32] Wang J, Lu J M, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14): 3218-3222.
[33] Wei Y, Gao C, Meng F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference[J]. Journal of Physical Chemistry C, 2012, 116(1): 1034-1041.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.