Corresponding Author

Bin SU(subin@zju.edu.cn)


Electrochemiluminescence (ECL) imaging, as a novel and powerful analytical method, possesses many distinct advantages, including simplicity, high controllability, high-throughput and visualization. In recent years, it has been used in developing portable and miniaturized ECL sensor, and made remarkable achievements. In this review, the progress of ECL imaging, focusing on array analysis and visualization of latent fingerprints, has been introduced briefly based on our recent investigations and an attempt has been made to propose the future research trend.

Graphical Abstract


electrochemiluminescence imaging, tris(2, 2′-bipyridyl)ruthenium(II), fingerprints, array analysis

Publication Date


Online Available Date


Revised Date


Received Date



[1] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. TrAC Trends in Analytical Chemistry, 1999, 18(1): 47-62.
[2] Richter M M. Electrochemiluminescence (ECL)[J]. Chemical Reviews, 2004, 104(6), 3003-3036.
[3] Zhou H, Kasai S, Matsue T. Imaging localized horseradish peroxidase on a glass surface with scanning electrochemical/chemiluminescence microscopy[J]. Analytical Biochemistry, 2001, 290(1): 83-88.
[4] Lei R, Stratmann L, Schafer D, et al. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence[J]. Analytical Chemistry, 2009, 81(12): 5070-5074.
[5] Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chemical Society Reviews, 2010, 39(8): 3275-3304.
[6] Maus R G, Wightman R M. Microscopic imaging with electrogenerated chemiluminescence[J]. Analytical Chemistry, 2001, 73(16): 3993-3998.
[7] Zu Y B, Ding Z F, Zhou J F, et al. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip[J]. Analytical Chemistry, 2001, 73(10): 2153-2156.
[8] Xu L R, Li Y, Wu S Z, et al. Imaging latent fingerprints by electrochemiluminescence[J]. Angewandte Chemie International Edition, 2012, 124(32): 8192-8196.
[9] Sojic N, Sentic M, Milutinovic M, et al. Mapping the electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays[J]. Chemical Science, 2014, 5: 2568-2572.
[10] Engstrom R C, Johnson K W, DesJarlais S. Characterization of electrode heterogeneity with electrogenerated chemiluminescence[J]. Analytical Chemistry, 1987, 59(4): 670-673.
[11] Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams[J]. Analytical Chemistry, 1996, 68(2): 349-354.
[12] Chovin A, Garrigue P, Sojic N. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array[J]. Electrochimica acta, 2004, 49(22): 3751-3757.
[13] Marquette C A, Degiuli A, Blum L J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate[J]. Biosensors and Bioelectronics, 2003, 19(5): 433-439.
[14] Deiss F, LaFratta C N, Symer M, et al. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level[J]. Journal of the American Chemical Society, 2009, 131(17): 6088-6089.
[15] Sardesai N P, Barron J C, Rusling J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins[J]. Analytical Chemistry, 2011, 83(17): 6698-6703.
[16] Hvastkovs E G, So M, Krishnan S, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo a pyrene metabolites[J]. Analytical Chemistry, 2007, 79(5): 1897-1906.
[17] Delaney J L, Hogan C F, Tian J, et al. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors[J]. Analytical Chemistry, 2011, 83(4): 1300-1306.
[18] Hao N, Xiong M, Zhang J D, et al. Portable thermo-powered high-throughput visual electrochemiluminescence sensor[J]. Analytical Chemistry, 2013, 85(24): 11715-11719.
[19] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.
[20] Lin X M, Zheng L Y, Gao G M, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells[J]. Analytical Chemistry, 2012, 84(18): 7700-7707.
[21] Qi H L, Li M, Dong M M, et al. Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide[J]. Analytical Chemistry, 2014, 86(3): 1372-1379.
[22] Wightman R M, Curtis C L, Flowers P A, et al. Imaging microelectrodes with high-frequency electrogenerated chemiluminescence[J]. The Journal of Physical Chemistry B, 1998, 102(49): 9991-9996.
[23] Chang Y L, Palacios R E, Fan F R F, et al. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles[J]. Journal of the American Chemical Society, 2008, 130(28): 8906-8907.
[24] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.
[25] Miao W J, Choi J P, Bard A J. Electrogenerated chemiluminescence 69: The tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+/tri-n-propylamine (TPrA) system revisited—A new route involving TPrA? + cation radicals[J]. Journal of the American Chemical Society, 2002, 124(48): 14478-14485.
[26] Liu X Q, Shi L H, Niu W X, et al. Environmentally friendly and highly sensitive ruthenium (ii) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as Co-reactant[J]. Angewandte Chemie International Edition, 2007, 119(3): 425-428.
[27] Chang M M, Saji T, Bard A J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions[J]. Journal of the American Chemical Society, 1977, 99(16): 5399-5403.
[28] White H S, Bard A J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J]. Journal of the American Chemical Society, 1982, 104(25): 6891-6895.
[29] F?hnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis[J]. Talanta, 2001, 54(4): 531-559.
[30] Marquette C A, Blum L J. Conducting elastomer surface texturing: A path to electrode spotting: Application to the biochip production[J]. Biosensors and Bioelectronics, 2004, 20(2): 197-203.
[31] Corgier B P, Marquette C A, Blum L J. Screen-printed electrode microarray for electrochemiluminescent measurements[J]. Analytica chimica acta, 2005, 538(1): 1-7.
[32] Sardesai N P, Kadimisetty K, Faria R, et al. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins[J]. Analytical and Bioanalytical Chemistry, 2013, 405(11): 3831-3838.
[33] Venkatanarayanan A, Crowley K, Lestini E, et al. High sensitivity carbon nanotube based electrochemiluminescence sensor array[J]. Biosensors and Bioelectronics, 2012, 31(1): 233-239.
[34] Krishnan S, Hvastkovs E G, Bajrami B, et al. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine[J]. Chemical Communications, 2007, (17): 1713-1715.
[35] Pan S M, Sardesai N P, Liu H Y, et al. Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes[J]. Toxicology Research, 2013, 2(6): 375-378.
[36] Krishnan S, Hvastkovs E G, Bajrami B, et al. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays[J]. Molecular Biosystems, 2009, 5(2): 163-169.
[37] Krishnan S, Hvastkovs E G, Bajrami B, et al. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors[J]. Analytical Chemistry, 2008, 80(14): 5279-5285.
[38] Wasalathanthri D P, Malla S, Bist I, et al. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence[J]. Lab on a Chip, 2013, 13(23): 4554-4562.
[39] Marquette C, Blum L J. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline[J]. Sensors and Actuators B: Chemical, 2003, 90(1): 112-117.
[40] Zhou Z, Xu L, Wu S, et al. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst, 2014, 139(19): 4934-4939.
[41] Mavre? F O, Anand R K, Laws D R, et al. Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems[J]. Analytical Chemistry, 2010, 82(21): 8766-8774.
[42] Chow K F, Mavre F, Crooks R M. Wireless electrochemical DNA microarray sensor[J]. Journal of the American Chemical Society, 2008, 130(24): 7544-7545.
[43] Chow K F, Mavre F, Crooks J A, et al. A Large-scale, wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society, 2009, 131(24): 8364-8365.
[44] Chang B Y, Mavre F, Chow K F, et al. Snapshot voltammetry using a triangular bipolar microelectrode[J]. Analytical Chemistry, 2010, 82(12): 5317-5322.
[45] Fosdick S E, Crooks J A, Chang B Y, et al. Two-dimensional bipolar electrochemistry[J]. Journal of the American Chemical Society, 2010, 132(27): 9226-9227.
[46] Sentic M, Loget G, Manojlovic D, et al. Light-emitting electrochemical "swimmers"[J]. Angewandte Chemie International Edition, 2012, 51(45): 11284-11288.
[47] Bouffier L, Zigah D, Adam C, et al. Lighting up redox propulsion with luminol electrogenerated chemiluminescence[J]. ChemElectroChem, 2014, 1(1): 95-98.
[48] Chang B Y, Crooks J A, Chow K F, et al. Design and operation of microelectrochemical gates and integrated circuits[J]. Journal of the American Chemical Society, 2010, 132(43): 15404-15409.
[49] Chang B Y, Chow K F, Crooks J A, et al. Two-channel microelectrochemical bipolar electrode sensor array[J]. Analyst, 2012, 137(12): 2827-2833.
[50] Wu S Z, Zhou Z Y, Xu L R, et al. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis[J]. Biosensors and Bioelectronics, 2014, 53: 148-153.
[51] Zhan W, Alvarez J, Crooks R M. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. Journal of the American Chemical Society, 2002, 124(44): 13265-13270.
[52] Xu L R, Li Y, He Y Y, et al. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence[J]. Analyst, 2013, 138(8): 2357-2362.
[53] Li Y, Xu L R, He Y Y, et al. Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene[J]. Electrochemistry Communications, 2013, 33, 92-95.
[54] Xu L R(许林茹), He Y Y(何亚芸), Su B(苏彬). Development of latent fingerprints based on electrochemiluminescence imaging of luminol[J]. Chemistry(化学通报), 2014, 77(1): 86-89.
[55] Xu L, Zhou Z, Zhang C, et al. Electrochemiluminescence Imaging of Latent Fingermarks through the Immunodetection of Secretions in the Human Perspiration. Chemical Communications, 2014, 50(65): 9097-9100.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.