Corresponding Author

Xi CHEN(xichen@xmu.edu.cn)


DNA electrochemical sensors have greatly promoted the development of biosensors for their high sensitivity, good selectivity, short analysis time and low cost. To further improve the detection sensitivity and selectivity, protein enzymes, functional nucleic acid enzymes etc. are often used due to the advantages of high catalytic efficiency and specificity. This review demonstrates the research progress of electrochemical sensors based on enzymatic amplification and analyses some existing problems of electrochemical sensors.

Graphical Abstract


DNA, enzyme, biosensor, electrochemistry

Publication Date


Online Available Date


Revised Date


Received Date



[1] Wang J. Electrochemical biosensing based on noble metal nanoparticles[J]. Microchimica Acta, 2012, 177(3/4): 245-270.
[2] Wilner O I, Willner B, Willner I. DNA nanotechnology[J]. Advances in Experimental Medicine and Biology, 2012, 733: 97-114.
[3] Arora R K, Saini R P. Biosensors: Way of diagnosis[J]. International Journal of Pharmaceutical Sciences and Research, 2013, 4(7): 2517-2527.
[4] Walcarius A, Minteer S D, Wang J, et al. Nanomaterials for bio-functionalized electrodes: Recent trends[J]. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(38): 4878-4908.
[5] Xu Y, Wang E. Electrochemical biosensors based on magnetic micro/nanoparticles[J]. Electrochimica Acta, 2012, 84: 62-73.
[6] Pedrero M, Campuzano S, Pingarron J M. Electrochemical genosensors based on PCR strategies for microorganisms detection and quantification[J]. Analytical Methods, 2011, 3(4): 780-789.
[7] Huang L, Wu J, Zheng L, et al. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A[J]. Analytical Chemistry, 2013, 85(22): 10842-10849.
[8] Ji H, Yan F, Lei J, et al. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification[J]. Analytical Chemistry, 2012, 84(16): 7166-7171.
[9] Cui L, Ke G, Wang C, et al. A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids[J]. Analyst, 2010, 135(8): 2069-2073.
[10] Xuan F, Luo X, Hsing I M. Conformation-dependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection[J]. Analytical Chemistry, 2013, 85(9): 4586-4593.
[11] Lin C, Wu Y, Luo F, et al. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy[J]. Biosensors & Bioelectronics, 2014, 59C: 365-369.
[12] Zuo X, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling[J]. Journal of the American Chemical Society, 2010, 132(6): 1816-1818.
[13] Liu S, Wang C, Zhang C, et al. Label-free and ultrasensitive electrochemical detection of nucleic acids based on autocatalytic and exonuclease III-assisted target recycling strategy[J]. Analytical Chemistry, 2013, 85(4): 2282-2288.
[14] Miranda-Castro R, Marchal D, Limoges B, et al. Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling[J]. Chemical Communications, 2012, 48(70): 8772-8774.
[15] Chen Y, Jiang B, Xiang Y, et al. Target recycling amplification for sensitive and label-free impedimetricgenosensing based on hairpin DNA and graphene/Au nanocomposites[J]. Chemical Communications, 2011, 47(48): 12798-12800.
[16] Yang M, Chen Y, Xiang Y, et al. Target-induced structure switching of DNA for label-free and ultrasensitive electrochemiluminescent detection of proteins[J]. Chemical Communications, 2014, 50(24): 3211-3213.
[17] Shlyahovsky B, Pavlov V, Kaganovsky L, et al. Biocatalytic evolution of a biocatalyst marker: Towards the ultrasensitive detection of immunocomplexes and DNA analysis[J]. Angewandte Chemie, 2006, 45(29): 4815-4819.
[18] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes[J]. Analytical Chemistry, 2001, 73(1): 91-102.
[19] Weizmann Y, Chenoweth D M, Swager T M. DNA-CNT nanowire networks for DNA detection[J]. Journal of the American Chemical Society, 2011, 133(10): 3238-3241.
[20] Wen Y, Pei H, Wan Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors[J]. Analytical Chemistry, 2011, 83(19): 7418-7423.
[21] Zhang Y, Tang Z, Wang J, et al. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification[J]. Analytical Chemistry, 2010, 82(15): 6440-6446.
[22] Liu G, Wan Y, Gau V, et al. An enzyme-based e-DNA sensor for sequence-specific detection of femtomolar DNA targets[J]. Journal of the American Chemical Society, 2008, 130(21): 6820-6825.
[23] Cai Z, Song Y, Wu Y, et al. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA[J]. Biosensors & Bioelectronics, 2013, 41: 783-788.
[24] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266.
[25] Brown A K, Li J, Pavot C M B, et al. A lead-dependent DNAzyme with a two-step mechanism[J]. Biochemistry, 2003, 42(23): 7152-7161.
[26] Wang F, Orbach R, Willner I. Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery[J]. Chemistry, 2012, 18(50): 16030-16036.
[27] Orbach R, Mostinski L, Wang F, et al. Nucleic acid driven DNA machineries synthesizing Mg2+-dependent DNAzymes: An interplay between DNA sensing and logic-gate operations[J]. Chemistry, 2012, 18(46): 14689-14694, S14689/1-S14689/3.
[28] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions[J]. Journal of the American Chemical Society, 2000, 122(42): 10466-10467.
[29] Miao X M, Ling L S, Shuai X T. Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique[J]. Chemical Communications, 2011, 47(14): 4192-4194.
[30] Wu Y F, Cai Z M, Wu G H, et al. A novel signal-on DNAzyme-based electrochemiluminescence, sensor for Pb2+[J]. Sensors and Actuators, B: Chemical, 2014, 191: 60-66.
[31] Zhang Z, Sharon E, Freeman R, et al. Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP), and telomerase activity by Zinc(II)-protoporphyrin IX/G-quadruplex labels[J]. Analytical Chemistry, 2012, 84(11): 4789-4797.
[32] Wang F, Elbaz J, Teller C, et al. Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process[J]. Angewandte Chemie, 2011, 50(1): 295-299, S295/1-S295/8.
[33] Wang F, Elbaz J, Orbach R, et al. Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires[J]. Journal of the American Chemical Society, 2011, 133(43): 17149-17151.
[34] Liu X Q, Freeman R, Golub E, et al. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes[J]. ACS Nano, 2011, 5(9): 7648-7655.
[35] Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: A paradigm for DNA sensors aptasensors[J]. Chemistry, 2009, 15(14): 3411-3418.
[36] Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots[J]. Journal of the American Chemical Society, 2011, 133(30): 11597-11604.
[37] Liu S, Lin Y, Wang L, et al. Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein[J]. Analytical Chemistry, 2014, 86(8): 4008-15.
[38] Wu J, Campuzano S, Halford C, et al. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification[J]. Analytical Chemistry, 2010, 82(21): 8830-8837.
[39] Campuzano S, Kuralay F, Lobo-Castanon M J, et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples[J]. Biosensors & Bioelectronics, 2011, 26(8): 3577-3583.
[40] Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors[J]. Angewandte Chemie, 2004, 43(16): 2113-2117.
[41] Abad J M, Gass M, Bleloch A, et al. Direct electron transfer to a metalloenzyme redox center coordinated to a monolayer-protected cluster[J]. Journal of the American Chemical Society, 2009, 131(29): 10229-10236.
[42] Tang D, Tang J, Li Q, et al. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I[J]. Analytical Chemistry, 2011, 83(19): 7255-7259.
[43] Lin C, Cai Z, Wang Y, et al. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise[J], Analytical Chemistry, 2014, 86(14): 6758-6762.
[44] Xuan F, Luo X, Hsing I M. Ultrasensitive solution-Phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling[J]. Analytical Chemistry, 2012, 84(12): 5216-5220.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.