Corresponding Author

Shao-jun DONG(dongsj@ciac.ac.cn)


The exploitation and utilization of fossil fuels have led to serious energy crisis and environmental pollution. In this case, the development of renewable energy is an alternative to traditional energy consumption. Fuel cells (FCs) can convert chemical energy into electricity via the electrochemical reaction, which is green and environment-friendly. Photo-assisted FCs integrate photo-responsive components into FCs, leading to the dual routes of energy conversion including light energy to electricity and chemical energy to electricity, and thus, improving the energy utilization efficiency. The development of photo-assisted FCs is significant for practical application and promising to solve the coming energy crisis. In this review, we give a brief introduction on photo-assisted FCs and highlight our recent achievements in this field. Meanwhile, the limitations and future perspectives of the systems are also presented. We hope that it will offer an easy to grasp but integral view of the photo-assisted FCs.

Graphical Abstract

Publication Date


Online Available Date


Revised Date


Received Date



[1] Boudghene Stambouli A and Traversa E. Fuel cells, an alternative to standard sources of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(3): 295-304.

[2] Kirubakaran A, Jain S and Nema R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430-2440.

[3] Lianos P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field[J]. Journal of Hazardous materials, 2011, 185(2-3): 575-590.

[4] Hambourger M, Gervaldo M, Svedruzic D, et al. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell[J]. Journal of the American Chemical Society, 2008, 130(6): 2015-2022.

[5] de la Garza L, Jeong G, Liddell P A, et al. Enzyme-based photoelectrochemical biofuel cell[J]. Journal of Physical Chemistry B, 2003, 107(37): 10252-10260.

[6] Brune A, Jeong G, Liddell P A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20(19): 8366-8371.

[7] Deng L, Wang Y, Shang L, et al. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J]. Biosensors and Bioelectronics, 2008, 24(4): 951-957.

[8] Deng L, Shang L, Wang Y, et al. Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell[J]. Electrochemistry Communications, 2008, 10(7): 1012-1015.

[9] Amao Y and Takeuchi Y. Visible light-operated saccharide-O2 biofuel cell based on the photosensitization of chlorophyll derivative on TiO2 film[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2845-2849.

[10] Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films[J]. Chemistry of Materials, 2002, 14(6): 2812-2816.

[11] Lee J S, Kato T, Fujishima A, et al. Photoelectrochemical oxidation of alcohols on polycrystalline zinc oxide[J]. Bulletin of the Chemical Society of Japan, 1984, 57(5): 1179-1183.

[12] Nonomura K, Komatsu D, Yoshida T, et al. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1843-1849.

[13] Chen Q, Li J, Li X, et al. Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation[J]. Environmental Science & Technology, 2012, 46(20): 11451-11458.

[14] Le Formal F, Gratzel M and Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting[J]. Advanced Functional Materials, 2010, 20(7): 1099-1107.

[15] Monllor-Satoca D, Bartsch M, Fabrega C, et al. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes[J]. Energy & Environmental Science, 2015, 8(11): 3242-3254.

[16] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letter, 2005, 6(2): 215-218.

[17] Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons[J]. Journal of the American Chemical Society, 2008, 130(40): 13364-13372.

[18] Roy P, Berger S and Schmuki P. TiO2 nanotubes: Synthesis and applications[J]. Angewandte Chemie-international Edition, 2011, 50(13): 2904-2939.

[19] Han L, Bai L, Zhu C, et al. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode[J]. Chemical Communications, 2012, 48(49): 6103-6105.

[20] Zhang L L, Han L, Hu P, et al. TiO2 nanotube arrays: Intrinsic peroxidase mimetics[J]. Chemical Communications, 2013, 49(89): 10480-10482.

[21] Han L, Guo S J, Wang P, et al. Light-driven, membraneless, hydrogen peroxide based fuel cells[J]. Advanced Energy Materials, 2015, 5(2): 4.

[22] Sanli A E and Aytac A. Response to disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(1): 869-875.

[23] Yamada Y, Yoshida S, Honda T, et al. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energy & Environmental Science, 2011, 4(8): 2822-2825.

[24] Yamada Y, Fukunishi Y, Yamazaki S, et al. Hydrogen peroxide as sustainable fuel: Electrocatalysts for production with a solar cell and decomposition with a fuel cell[J]. Chemical Communications, 2010, 46(39): 7334-7336.

[25] Yamazaki S I, Siroma Z, Senoh H, et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. Journal of Power Sources, 2008, 178(1): 20-25.

[26] Han L, Guo S J, Xu M, et al. Photoelectrochemical batteries for efficient energy recovery[J]. Chemical Communications, 2014, 50(87): 13331-13333.

[27] Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15925-15930.

[28] Li Z, Luo W, Zhang M, et al. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy & Environmental Science, 2013, 6(2): 347-370.

[29] O'Regan B and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.

[30] Rasmussen M, Shrier A and Minteer S D. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9062-9065.

[31] Kirchhofer N D, Rasmussen M A, Dahlquist F W, et al. The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes[J]. Energy & Environmental Science, 2015, 8(9): 2698-2706.

[32] Yehezkeli O, Wilner O I, Tel-Vered R, et al. Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes[J]. The Journal of Physical Chemistry B, 2010, 114(45): 14383-14388.

[33] Yehezkeli O, Tel-Vered R, Wasserman J, et al. Integrated photosystem II-based photo-bioelectrochemical cells[J]. Nature Communications, 2012, 3: 742-748.

[34] Wang F, Liu X and Willner I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications[J]. Advanced Materials, 2013, 25(3): 349-377.

[35] Yehezkeli O, Tel-Vered R, Michaeli D, et al. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents[J]. Small, 2013, 9(17): 2970-2978.

[36] Fortage J, Boschloo G, Blart E, et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V[J]. Angewandte Chemie-international Edition, 2009, 48(24): 4402-4405.

[37] Zhao X, Guo L B, Hu C Z, et al. Simultaneous destruction of nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode[J]. Applied Catalysis B-Environmental, 2014, 144: 478-485.

[38] Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 77(3): 229-237.

[39] Li C L, Li Y B and Delaunay J J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 480-486.

[40] Wang P, Tang Y M, Wen X M, et al. Enhanced visible light-induced charge separation and charge transport in Cu2O -based photocathodes by urea treatment[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19887-19893.

[41] Swain S, Thakur I, Chatterjee S, et al. Array of Cu2O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction[J]. Journal of Applied Physics, 2015, 117(2): 7.

[42] Lepleux L, Chavillon B, Pellegrin Y, et al. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells[J]. Inorganic Chemistry, 2009, 48(17): 8245-8250.

[43] Lin C Y, Lai Y H, Mersch D, et al. Cu2O vertical bar niox nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting[J]. Chemical Science, 2012, 3(12): 3482-3487.

[44] Bachmeier A, Hall S, Ragsdale S W, et al. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode[J]. Journal of the American Chemical Society, 2014, 136(39): 13518-13521.

[45] Sahara G, Abe R, Higashi M, et al. Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode[J]. Chemical Communications, 2015, 51(53): 10722-10725.

[46] Fujishima Y, Okamoto S, Yoshiba M, et al. Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO1-xCl1-y) photocatalysts that uses acidic water as a fuel[J]. Journal of Materials Chemistry A, 2015, 3(16): 8389-8404.

[47] Cheng H, Huang B and Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6(4): 2009-2026.

[48] Jiang J, Zhao K, Xiao X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2012, 134(10): 4473-4476.

[49] Jana?ky C, Endro?di B z, Berkesi O, et al. Visible-light-enhanced electrocatalytic activity of a polypyrrole/magnetite hybrid electrode toward the reduction of dissolved dioxygen[J]. The Journal of Physical Chemistry C, 2010, 114(45): 19338-19344.

[50] Higashihara T and Ueda M. Precision synthesis of tailor-made polythiophene-based materials and their application to organic solar cells[J]. Macromolecular Research, 2013, 21(3): 257-271.

[51] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phaseâ polymerized PEDOT electrode[J]. Science, 2008, 321(5889): 671-674.

[52] Bencsik G, Lukacs Z and Visy C. Photo-electrochemical sensor for dissolved oxygen, based on a poly(3,4-ethylenedioxythiophene)/iron oxalate hybrid electrode[J]. Analyst, 2010, 135(2): 375-380.

[53] Lei Y, Wang G, Song S, et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm, 2009, 11(9): 1857-1862.

[54] Cheng H, Huang B, Wang P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications, 2011, 47(25): 7054-7056.

[55] Shi C J, Yao Y, Yang Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27): 8980-8986.

[56] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.

[57] Uhrich C, Schueppel R, Petrich A, et al. Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap[J]. Advanced Functional Materials, 2007, 17(15): 2991-2999.

[58] Xin H, Kim F S and Jenekhe S A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires[J]. Journal of the American Chemical Society, 2008, 130(16): 5424-5425.

[59] Huisman C L, Huijser A, Donker H, et al. UV polymerization of oligothiophenes and their application in nanostructured heterojunction solar cells[J]. Macromolecules, 2004, 37(15): 5557-5564.

[60] Khomenko V G, Barsukov V Z and Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction[J]. Electrochimica Acta, 2005, 50(7-8): 1675-1683.

[61] Zhang L L, Xu Z K, Lou B H, et al. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell[J]. ChemSusChem, 2014, 7(9): 2427-2431.

[62] Zhang L L, Bai L, Xu M, et al. High performance ethanol/air biofuel cells with both the visible-light driven anode and cathode[J]. Nano Energy, 2015, 11: 48-55.

[63] Xia L, Bai J, Li J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B: Environmental, 2016, 183: 224-230.

[64] Han L, Hu P, Xu Z K, et al. Electrodeposition and photoelectrochemical properties of p-type BiOIαCl1-α nanoplatelet thin films[J]. Electrochimica Acta, 2014, 115: 263-268.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.