Corresponding Author

De-yin Wu(dywu@xmu.edu.cn)


At present photoelectrochemistry has received much concern back to nanostructures of noble metals from semiconductor electrodes. This is due to the surface plasmon resonance (SPR) effect of metallic nanostructures, which can effectively convert the far-field light to the near-field light and concentrate the photonic energy to the local surface area with high energy density. Thus, the different enhancement mechanisms, such as the local optical field enhancement, the formation of light generated hot carriers (hot electron-hole pairs), or the photothermal effect, have been proposed in literatures. On the basis of the SPR enhancement effect, the surface-enhanced Raman spectroscopy (SERS) can be used to characterize the surface species but also induce surface chemical reactions. This provides a new idea to study the synergic effect of light and electricity in electrochemical interfaces. The article first reviewed a brief history of photoelectrochemistry, and then summarized our work on the light splitting water to hydrogen molecules, the photo-driven surface catalytic coupling reactions of the p-aminothiophenol oxidation and the p-nitrothiophenol reduction in electrochemical interfaces. Finally, we presented a simple prospective on the relationship of the SPR and the hot electron-hole pairs to plasmon-enhanced photoelectrochemical reactions.

Graphical Abstract


quantum chemistry, electrochemical surface-enhanced Raman spectroscopy, charge transfer state, surface plasmon resonance, photoelectrochemistry

Publication Date


Online Available Date


Revised Date


Received Date



[1] Becquerel E. Memoire sur les effects electriques produits sous l'influence des rayons solaires[J]. Comt. Rend. Acad. Sci., 1839, 9: 561-567.

[2] Williams R. Becquerel photovoltaic effect in binary compounds[J]. The Journal of Chemical physics, 1960, 32(5): 1505-1514.

[3] Bockris J O M, Khan S U. Surface electrochemistry: a molecular level approach[M]: Springer Science & Business Media, 2013.

[4] Grätzel M. Light-induced charge separation and water cleavage in microheterogeneous aqueous systems[J]. Faraday Discussions of the Chemical Society, 1980, 70: 359-374.

[5] Wallace W L. Photoelectrochemistry, fundamental processes and measurement techniques: proceedings of the symposia on Photoelectrochemical processes and Measurement techniques for photoelectrochemical solar cells[M]: Electrochemical Society, 1982.

[6] Hertz H R. On the influence of ultraviolet light upon the electric discharge[J]. Ann. Phys., 1887, 31: 983-1000.

[7] Einstein A. On a heuristic viewpoint concerning the generation and transformation of light[J]. Ann. Phys., 1905, 17: 132-184.

[8] Gurevich Y V, Pleskov Y V, Rotenberg Z A. Photoelectrochemistry[M]. New York: Consultants Bureau,1980.

[9] Becquerel E. Studies on Luminous Effects Caused by the Action of Light on Substances. I[J]. Annales de Chimie Physique, 1859, 56:99.

[10] Berg H, in Mordern Aspects of Polarography, T. Kambara, Editor. 1966, Plenum Press: New York. p. 29.

[11] Heyrovsky M. Photoeffect in aqueous solutions[J]. Nature, 1965, 206: 1356-1357.

[12] Barker G C, Gardner A W,Sammon D C. Photocurrents produced by ultraviolet irradiation of mercury electrodes[J]. Journal of Electrochemical Society, 1966, 113(11): 1182-1198.

[13] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[14] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95-103.

[15] Gratzel M, ed. Energy Resources Through Photochemistry and Catalysis. 1983, Acadmic Press: London.

[16] Bai Y B, Wang Q Y, Lu R T, et al. Progress on perovskite-based solar cells[J]. Chinese Science Bulletin, 2016, 61(4-5): 489-500.

[17] Fowler R H,Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society of London A, 1928, 119: 173-181.

[18] Barker G, Gardner A,Bottura G. Laser-induced potential changes at a mercury electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1973, 45(1): 21-30.

[19] Barker G, McKeown D, Williams M, et al. Charge transfer reactions involving intermediates formed by homogeneous capture of laser-produced photoelectrons[J]. Faraday Discussions of the Chemical Society, 1973, 56: 41-51.

[20] Feibelman P J,Eastman D E. Photoemission spectroscopy. Correspondence between quantum theory and experimental phenomenology[J]. Physical Review B, 1974, 10(12): 4932-4947.

[21] Hillson P J,Rideal E. The Becquerel effect in the presence of dyestuffs and the action of light on dyes[J]. Proc. Roy. Soc. A, 1953, 216: 458-476.

[22] Quickenden T I,Yim G K. Photoelectrochemical kinetics and the relationship between photovoltage and light intensity for metal photoelectrodes coadted with adsorbed dyes[J]. Electrochimica Acta, 1978, 23: 1045-1047.

[23] Brodskii A M,Gurevich Y Y. Theory of external photoeffect from the surface of a metal[J]. Soviet Physics JETP, 1968, 27: 114-121.

[24] Severeyn R B,Gale R L, Photoemission Phenomena at Metallic and Semiconducting Electrodes, in Spectroelectrochemistry: Theory and Practice[M], R.J. Gale, Editor. 1988, Plenum Press: New York. p. 41-85.

[25] Bockris J O M, Khan S U M. Quantum Electrochemistry[M]. New York: Plenum Press,1979.

[26] Bockris J O M, Khan S U M, Uosaki K. On photoelectrochemical kinetics[J]. J. Res. Inst. Catalysis, Hokkaido Univ., 1976, 24(1): 1-26.

[27] Gerischer H. Electrode reactions with excited electronic states[J]. Berichte der Bunsen-Gesellschaft, 1973, 77(10-11): 771-782.

[28] Echenique P M. Decay of electronic excitations at metal surfaces[J]. Surface Science Reports, 2004, 52: 219-317.

[29] Aeschlimann M, Bauer M,Pawlik S. Competing nonradiative channels for hot electron induced surface photochemistry[J]. Chemical Physics, 1996, 205: 127-141.

[30] Schone W D. Theoretical determination of electronic lifetimes in metals[J]. Progress in Surface Science, 2007, 82: 161-192.

[31] McIntyre R,Sass J K. Charge transfer reaction inverse photoemission spectroscopy (CTRIPS). Part I. Concept and feasibility[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 196(1): 199-202.

[32] McIntyre R, Roe D K, Sass J K, et al. Charge transfer reaction inverse photoemission spectroscopy (CTRIPS). Part II. Electrode specificity[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228(1-2): 293-300.

[33] Uosaki K, Murakoshi K,Kita H. Photon emission via surface state at the gold/acetonitrile solution interface[J]. Journal of Physical Chemistry, 1991, 95(2): 779-783.

[34] Murakoshi K,Uosaki K. Observation and mechanism of photon emission at metal-solution interfaces[J]. Physical Review B, 1993, 47(4): 2278-2288.

[35] Sun S C, Birke R L, Lombardi J R, et al. Photolysis of para-nitrobenzoic acid on roughened silver surfaces[J]. Journal of Physical Chemistry, 1988, 92(21): 5965-5972.

[36] Hale J M. Electrode reactions involving electronically excited states of molecules[J]. Journal of Physical Chemistry, 1969, 73: 3196-3201.

[37] Pang R, Jin X, Zhao L B, et al. Quantum chemistry study of electrochemical surface-enhanced Raman spectroscopy[J]. Chemical Journal of Chinese Universities-Chinese, 2015, 36(11): 2087-2098.

[38] Fang Y,Liu Z. Electrochemical reactions at the electrode/solution interface: Theory and applications to water electrolysis and oxygen reduction[J]. Science China-Chemistry, 2010, 53(3): 543-552.

[39] Wu D-Y, Liu X-M, Duan S, et al. Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. The Journal of Physical Chemistry C, 2008, 112(11): 4195-4204.

[40] Wu D-Y, Li J-F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.

[41] Wu D Y, Ren B, Jiang Y X, et al. Density functional study and normal-mode analysis of the bindings and vibrational frequency shifts of the pyridine-M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) complexes[J]. Journal of Physical Chemistry A, 2002, 106(39): 9042-9052.

[42] Wu D Y, Hayashi M, Shiu Y J, et al. A quantum chemical study of bonding interaction, vibrational frequencies, force constants, and vibrational coupling of pyridine-M-n (M = Cu, Ag, Au; n=2-4)[J]. Journal of Physical Chemistry A, 2003, 107(45): 9658-9667.

[43] Wu D-Y, Liu X-M, Huang Y-F, et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study[J]. The Journal of Physical Chemistry C, 2009, 113(42): 18212-18222.

[44] Huang Y-F, Zhu H-P, Liu G-K, et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement[J]. Journal of the American Chemical Society, 2010, 132(27): 9244-9246.

[45] Baker J, Jarzecki A A,Pulay P. Direct scaling of primitive valence force constants: An alternative approach to scaled quantum mechanical force fields[J]. Journal of Physical Chemistry A, 1998, 102(8): 1412-1424.

[46] Wu D, Hayashi M, Lin S, et al. Theoretical differential Raman scattering cross-sections of totally-symmetric vibrational modes of free pyridine and pyridine-metal cluster complexes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(1): 137-146.

[47] Nakai H,Nakatsuji H. Electronic mechanism of the surface-enhanced Raman-scattering[J]. Journal of Chemical Physics, 1995, 103(6): 2286-2294.

[48] Wu D Y, Duan S, Ren B, et al. Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces[J]. Journal of Raman Spectroscopy, 2005, 36(6-7): 533-540.

[49] Pang R, Yu L J, Wu D Y, et al. Surface electron-hydronium ion-pair bound to silver and gold cathodes: A density functional theoretical study of photocatalytic hydrogen evolution reaction[J]. Electrochimica Acta, 2013, 101: 272-278.

[50] Schwerdtfeger P. The pseudopotential approximation in electronic structure theory[J]. ChemPhysChem, 2011, 12: 3143-3155.

[51] Toney M F, Howard J N, Richer J, et al. Voltage-dependent ordering of water-molecules at an electrode-electrolyte interface[J]. Nature, 1994, 368(6470): 444-446.

[52] Li J F, Huang Y F, Duan S, et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles[J]. Physical Chemistry Chemical Physics, 2010, 12(10):2493-2502.

[53] Xu X, Wu D, Ren B, et al. On-top adsorption of hydrogen at platinum electrodes: a quantum-chemical study[J]. Chemical physics letters, 1999, 311(3): 193-201.

[54] Wu D Y, Duani S, Liu X M, et al. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)(n)(-) (n=2 and 3), H2O center dot center dot center dot X-(X = F, Cl, Br, and I), and H2O center dot center dot center dot M-(M = Cu, Ag, and Au)[J]. Journal of Physical Chemistry A, 2008, 112(6): 1313-1321.

[55] Quaino P, Luque N B, Soldano G, et al. Solvated protons in density functional theory-A few examples[J]. Electrochimica Acta, 2013, 105: 248-253.

[56] Kirchner B. Eigen or Zundel Ion: News from calculated and experimental photoelectron spectroscopy[J]. ChemPhysChem, 2007, 8(1): 41-43.

[57] Diesing D, Kritzler G, Stermann M, et al. Metal/insulator/metal junctions for electrochemical surface science[J]. Journal of Solid State Electrochemistry, 2003, 7(7): 389-415.

[58] Ruderman A, Juarez M, Avalle L, et al. First insights of the electrocatalytical properties of stepped silver electrodes for the hydrogen evolution reaction[J]. Electrochemistry Communications, 2013, 34: 235-238.

[59] Campbell F W, Belding S R, Baron R, et al. The hydrogen evolution reaction at a silver nanoparticle array and a silver macroelectrode compared: changed electrode kinetics between the macro-and nanoscales[J]. The Journal of Physical Chemistry C, 2009, 113(33): 14852-14857.

[60] Picq G,Vennereau P. Oxidation and reduction of H atoms, produced by protonic trapping of photo emitted electrons, on gold electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 96(2): 131-148.

[61] Hamelin A, Picq G, Vennereau P. Oxidation and reduction of atomic hydrogen photogenerated on gold single-crystal faces[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 148(1): 61-71.

[62] Parsons R, Picq G, Vennereau P. Comparison between the protonation of atomic hydrogen resulting in hydrogen evolution and in the protonic trapping of photoemitted electrons on gold electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 181(1-2): 281-287.

[63] Matsuda N, Yoshii K, Ataka K, et al. Surface-enhanced infrared and Raman studies of electrochemical reduction of self-assembled monolayers formed from para-nitrohiophenol at silver[J]. Chemistry Letters, 1992, (7): 1385-1388.

[64] Osawa M, Matsuda N, Yoshii K, et al. Charge-transfer resonance process in surface-enhanced Raman-scattering from p-aminothiophenol adsorbed on silver-Herzberg-Teller contribution[J]. Journal of Physical Chemistry, 1994, 98(48): 12702-12707.

[65] Hill W,Wehling B. Potential-dependent and pH-dependent surface-enhanced Raman-scattering of p-mercaptoaniline on silver and gold substrates[J]. Journal of Physical Chemistry, 1993, 97(37): 9451-9455.

[66] Zhou Q, Li X W, Fan Q, et al. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy[J]. Angewandte Chemie-International Edition, 2006, 45(24): 3970-3973.

[67] Roth P G, Venkatachalam R S, Boerio F J. Surface-enhanced Raman-scattering from para-nitrobenzoic acid[J]. Journal of Chemical Physics, 1986, 85(2): 1150-1155.

[68] Zhao L B Huang Y F, Wu D Y, et al. Surface-enhanced Raman spectroscopy and plasmon-assisted photocatalysis of p-aminothiophenol[J]. Acta Chimica Sinica, 2014, 72(11): 1125-1138.

[69] Fang Y, Li Y, Xu H, et al. Ascertaining p, p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles[J]. Langmuir, 2010, 26(11): 737-7746.

[70] Sun M, Xu H. A Novel application of plasmonics: Plasmon-driven surface-catalyzed reactions[J]. Small, 2012, 8(18): 2777-2786.

[71] Zhao L-B, Zhang M, Huang Y-F, et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds[J]. The Journal of Physical Chemistry Letters, 2014, 5(7): 1259-1266.

[72] Huang Y-F, Zhang M, Zhao L-B, et al. Activation of Oxygen on Gold and Silver Nanoparticles Assisted by Surface Plasmon Resonances**[J]. Angewandte Chemie-International Edition, 2014, 53(9): 2353-2357.

[73] Zhao L-B, Huang Y-F, Liu X-M, et al. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12919-12929.

[74] Wu D-Y, Zhang M, Zhao L-B, et al. Surface plasmon-enhanced photochemical reactions on noble metal nanostructures[J]. Science China Chemistry, 2015, 58(4): 574-585.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.