Corresponding Author

Yu-guo GUO(ygguo@iccas.ac.cn)


The stable interface is still a challenge for lithium-sulfur (selenium) batteries because of the low conductivity of sulfur (selenium), dissolution of polysulfide (polyselenide), volume expansion of sulfur (selenium), and lithium dendrite growth. This review describers some recent developments in lithium-sulfur (selenium) batteries and highlights our efforts in this field. The possible strategies for building stable interface in the lithium-sulfur (selenium) batteries including nano-restriction effect, chemical bonding, interface adsorption, surface coating, electrolyte optimization, and Lithium anode treatment have been discussed.

Graphical Abstract

Publication Date


Online Available Date


Revised Date


Received Date



[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(2): 19-29.

[2] Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16).

[3] Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry., 2010, 20(44): 9821-9826.

[4] Manthiram A, Chung S-H, Zu C. Lithium-Sulfur batteries: progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.

[5] Manthiram A, Fu Y, Chung S-H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.

[6] Song M K, Cairns E J, Zhang Y G. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204.

[7] Wang J L, He Y S, Yang J. Sulfur-Based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015, 27(3): 569-575.

[8] Yang C P, Yin Y X, Guo Y G. Elemental selenium for electrochemical energy storage[J]. Journal of Physical Chemistry Letters, 2015, 6(2): 256-266.

[9] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032.

[10] Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200.

[11] Ma J, Hu P, Cui G, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of Materials, 2016, 28(11): 3578-3606.

[12] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.

[13] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.

[14] Li Z, Yuan L X, Yi Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7).

[15] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531-1537.

[16] Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608.

[17] Zheng S Y, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientificc Repports-Uk, 2014, 4.

[18] Zheng S Y, Wen Y, Zhu Y J, et al. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes[J]. Advanced Energy Materials, 2014, 4(16).

[19] Xin S, Yin Y X, Wan L J, et al. Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan[J]. Particle & Particle Systems Characterization, 2013, 30(4): 321-325.

[20] Yang C P, Xin S, Yin Y X, et al. An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries[J]. Angewandte Chemie-International Edition, 2013, 52(32): 8363-8367.

[21] Liu Y X, Si L, Zhou X S, et al. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries[J]. Journal of Materials Chemistry A, 2014, 2(42): 17735-17739.

[22] Ye H, Yin Y X, Zhang S F, et al. Advanced Se-C nanocomposites: a bifunctional electrode material for both Li-Se and Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(33): 13293-13298.

[23] Zeng L, Zeng W, Jiang Y, et al. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries[J]. Advanced Energy Materials, 2015, 5(4), Doi: 10.1002/aenm.201401377.

[24] Li X N, Liang J W, Zhang K L, et al. Amorphous S-rich S1-xSex/C (x <= 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186.

[25] Wang J L, Yang J, Wan C R, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492.

[26] Fanous J, Wegner M, Grimminger J, et al. Structure-Related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028.

[27] Wang L, He X M, Li J J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 22077-22081.

[28] Guo J, Wen Z, Wang Q, et al. A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life[J]. Journal of Materials Chemistry A, 2015, 3(39): 19815-19821.

[29] Yin L C, Wang J L, Yu X L, et al. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries[J]. Chemical Communications, 2012, 48(63): 7868-7870.

[30] Yin L C, Wang J L, Lin F J, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy & Environmental Science, 2012, 5(5): 6966-6972.

[31] Li N W, Yin Y X, Guo Y G. Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium-sulfur batteries[J]. Rsc Advances, 2016, 6(1): 617-622.

[32] Yang C P, Yin Y X, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8789-8795.

[33] Wang X, Gao Y, Wang J, et al. Chemical adsorption: another way to anchor polysulfides[J]. Nano Energy, 2015, 12: 810-815.

[34] Wang Z, Dong Y, Li H, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5: 5002.

[35] Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759.

[36] Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294.

[37] Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 5682.

[38] Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: 11203.

[39] Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.

[40] Qiu Y, Li W, Zhao W, et al. High-Rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters, 2014, 14(8): 4821-4827.

[41] Tang C, Zhang Q, Zhao M-Q, et al. Nitrogen-Doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105.

[42] Chen H W, Wang C H, Dai Y F, et al. Rational design of cathode structure for high rate performance lithium-sulfur batteries[J]. Nano Letters, 2015, 15(8): 5443-5448.

[43] Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3584-3590.

[44] You Y, Zeng W C, Yin Y X, et al. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(9): 4799-4802.

[45] Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898.

[46] Ding B, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery[J]. Electrochimica Acta, 2013, 107(0): 78-84.

[47] Yang Y, Yu G H, Cha J J, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. Acs Nano, 2011, 5(11): 9187-9193.

[48] Li N W, Zheng M B, Lu H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications, 2012, 48(34): 4106-4108.

[49] Li G C, Li G R, Ye S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245.

[50] Song M K, Zhang Y G, Cairns E J. A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance[J]. Nano Letters, 2013, 13(12): 5891-5899.

[51] Wang L, Wang D, Zhang F X, et al. Interface chemistry guided long-cycle-life Li-S battery[J]. Nano Letters, 2013, 13(9): 4206-4211.

[52] Chung S-H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.

[53] Seh Z W, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331.

[54] Zhang J, Ye H, Yin Y X, et al. Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2014, 23(3): 308-314.

[55] Ma G, Wen Z, Jin J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. Rsc Advances, 2014, 4(41): 21612-21618.

[56] Ma G, Wen Z, Jin J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10350-10354.

[57] Wu F, Lee J T, Nitta N, et al. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: mechanisms of performance enhancement[J]. Advanced Materials, 2015, 27(1): 101-108.

[58] Yan Y(颜洋), Yin Y X(殷雅侠), Guo Y G(郭玉国), et al. Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries[J]. Science China-Chemistry(中国科学 化学), 2014, 57(11): 1564-1569.

[59] Suo L M, Hu Y S, Li H, et al. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.

[60] Zheng J M, Gu M, Chen H H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(29): 8464-8470.

[61] Yan Y, Yin Y X, Xin S, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J]. Electrochimica Acta, 2013, 91: 58-61.

[62] Cheng X B, Peng H J, Huang J Q, et al. Dendrite-Free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263.

[63] Zhang X L, Wang W K, Wang A B, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(30): 11660-11665.

[64] Huang C, Xiao J, Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications, 2014, 5: 3015.

[65] Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.

[66] Wu M F, Wen Z Y, Liu Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19): 8091-8097.

[67] Ma G Q, Wen Z Y, Wu M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014, 50(91): 14209-14212.

[68] Yang C-P, Yin Y-X, Zhang S-F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.

[69] Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916.

[70] Zhang R, Cheng X-B, Zhao C-Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.