Corresponding Author

Jia-wei YAN(jwyan@xmu.edu.cn);
Bing-wei MAO(bwmao@xmu.edu.cn)


Potential-dependent structures of Pt(100)/ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate (OMIPF6) interface have been studied by electrochemical scanning tunneling microscopy (ECSTM). The cation OMI+ forms ordered structure on Pt(100) surface, which exists in a potential region of about 1.2 V. When the potential is more negative than -0.6 V, it can be seen that the ordered structure transforms to disordered structure. When the potential shifts positively to +0.6 V, the desorption of cations OMI+ occurs, which indicates that strong electrostatic repulsion is needed to overcome chemical interaction between OMIPF6 and Pt(100) surface, leading to the desorption. The above results demonstrate that owing to the longer alkyl chain OMI+ can interact strongly with Pt(100), which plays an important role in the structure of Pt(100)/ OMIPF6 interface.

Graphical Abstract


Electrochemical interface, Ionic liquid, Pt(100), Ordered adsorption

Publication Date


Online Available Date


Revised Date


Received Date



[1]. Michel Armand, Frank Endres, Douglas R. MacFarlane, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629.

[2]. Douglas R. Macfarlane, Maria Forsyth, Patrick C. Howlett, et al. Ionic liquids in electrochemical devices and processes: managing interfacial Electrochemistry[J]. Accounts Of Chemical Research, 2007, 40(11): 1165-1173.

[3]. Ohno,Hiroyuki, Electrochemical aspects of ionic liquids. Wiley-Interscience. 110-111.

[4]. Maxim V. Fedorov,Alexei A. Kornyshev. Ionic Liquids at Electrified Interfaces[J]. Chemical Reviews, 2014, 114(5): 2978-3036.

[5]. Li M G, Chen L, Zhong Y X, et al. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid-A combined in-situ scanning probe microscopy and impedance study[J]. Electrochimica Acta, 2016, 197: 282-289.

[6]. Su Y Z, Fu Y C, Wei Y M, et al. The Electrode/Ionic Liquid Interface: Electric Double Layer and Metal Electrodeposition[J]. Chemphyschem, 2010, 11(13): 2764-2778.

[7]. Zhong Y X, Yan J W, Li M G, et al. Electric Double Layer in Ionic Liquid Incorporated with Water Molecules: An AFM Force Curve Study[J]. ChemElectroChem, 2016. DOI: 10.1002/celc.201600177

[8]. Su Y Z, Yan J W, Li M G, et al. Electric Double Layer of Au(100)/Imidazolium-Based Ionic Liquids Interface: Effect of Cation Size[J]. Journal Of Physical Chemistry C, 2013, 117(1): 205-212.

[9]. Su Y Z., Fu Y C., Yan J W., et al. Double Layer of Au(100)/Ionic Liquid Interface and Its Stability in Imidazolium-Based Ionic Liquids[J]. Angewandte Chemie-International Edition, 2009, 48(28): 5148-5151.

[10]. O. Brummel, F. Faisal, T. Bauer, et al. Ionic Liquid-Modified Electrocatalysts: The Interaction of C(1)C(2)Im OTf with Pt(111) and its Influence on Methanol Oxidation Studied by Electrothemical IR Spectroscopy[J]. Electrochimica Acta, 2016, 188: 825-836.

[11]. F. A. Hanc-Scherer, M. A. Montiel, V. Montiel, et al. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23909-23916.

[12]. Wang W, Royce W. Murray. Electrochemistry and contact angles of an ionic liquid sessile droplet on films of monolayer-protected au nanoparticles[J]. Analytical Chemistry, 2007, 79(3): 1213-1220.

[13]. Yang Y Y, Zhang L N, Masatoshi Osawa, et al. Surface-Enhanced Infrared Spectroscopic Study of a CO-Covered Pt Electrode in Room-Temperature Ionic Liquid[J]. Journal Of Physical Chemistry Letters, 2013, 4(10): 1582-1586.

[14]. Xie X F(谢旭芬 ), Liang J H(梁景洪),Li J J(李纪军), et al. Underpotential Deposition of Germanium on Au(111) and Pt(111) Surfaces in Ionic Liquids [J]. Journal of Electrochemistry(电化学), 2014, 20(1):16.

[15]. A. M. Navarro-Suarez, J. C. Hidalgo-Acosta, L. Fadini, et al. Electrochemical Oxidation of Hydrogen on Basal Plane Platinum Electrodes in Imidazoliurn Ionic Liquids[J]. Journal Of Physical Chemistry C, 2011, 115(22): 11147-11155.

[16]. A. P. Sandoval, M. F. Suarez-Herrera,J. M. Feliu. Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes[J]. Electrochemistry Communications, 2014, 46: 84-86.

[17]. E. E. Switzer, R. Zeller, Q. Chen, et al. Oxygen Reduction Reaction in Ionic Liquids: The Addition of Protic Species[J]. Journal Of Physical Chemistry C, 2013, 117(17): 8683-8690.

[18]. A. P. Sandoval, M. F. Suarez-Herrera,J. M. Feliu. IR and electrochemical synthesis and characterization of thin films of PEDOT grown on platinum single crystal electrodes in EMMIM Tf2N ionic liquid[J]. Beilstein Journal Of Organic Chemistry, 2015, 11: 348-357.

[19]. A. P. Sandoval, J. M. Feliu, R. M. Torresi, et al. Electrochemical properties of poly(3,4-ethylenedioxythiophene) grown on Pt(111) in imidazolium ionic liquids[J]. Rsc Advances, 2014, 4(7): 3383-3391.

[20]. Zhang X, Zhong Y X, Yan J W, et al. Probing double layer structures of Au (111)-BMIPF6 ionic liquid interfaces from potential-dependent AFM force curves[J]. Chemical Communications, 2012, 48(4): 582-584.

[21]. Zhong Y X, Yan J W, Li M G, et al. Resolving Fine Structures of the Electric Double Layer of Electrochemical Interfaces in Ionic Liquids with an AFM Tip Modification Strategy[J]. Journal Of the American Chemical Society, 2014, 136(42): 14682-14685.

[22]. Celine Cannes, Hubert Cachet, Catherine Debiemme-Chouvy, et al. Double Layer at BuMeIm Tf2N Ionic Liquid-Pt or -C Material Interfaces[J]. Journal Of Physical Chemistry C, 2013, 117(44): 22915-22925.

[23]. Marcel Drueschler, Benedikt Huber, Stefano Passerini, et al. Hysteresis Effects in the Potential-Dependent Double Layer Capacitance of Room Temperature Ionic Liquids at a Polycrystalline Platinum Interface[J]. Journal Of Physical Chemistry C, 2010, 114(8): 3614-3617.

[24]. Shimpei Makino, Yuki Kitazumi, Naoya Nishi, et al. Charging current probing of the slow relaxation of the ionic liquid double layer at the Pt electrode[J]. Electrochemistry Communications, 2011, 13(12): 1365-1368.

[25]. Zhou W, Soya Inoue, Takashi Iwahashi, et al. Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface - an in-situ IR-visible sum-frequency generation spectroscopic study[J]. Electrochemistry Communications, 2010, 12(5): 672-675.

[26]. Paula Sebastian, Andrea P. Sandoval, Victor Climent, et al. Study of the interface Pt(111)/ Emmim NTf2 using laser-induced temperature jump experiments[J]. Electrochemistry Communications, 2015, 55: 39-42.

[27]. Zhang X(张笑), Zhong Y X(钟赟鑫),Yan J W(颜佳伟), et al. In -situ AFM force curve investigations on layered structures of Au(111)-ionic liquid interfaces and temperature dependence[J]. Journal of Electrochemistry(电化学), 2014, 20(4):295-301.

[28]. Hu X Y, Chen C L, Tang S, et al. An in situ STM investigation of EMITFSI ionic liquid on Au(111) in the presence of lithium salt[J]. Science Bulletin, 2015, 60(9): 877-883.

[29]. Hu X Y, Chen C L, Yan J W, et al. Electrochemical and in-situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl)imide based ionic liquids on graphite and gold electrodes and lithium salt influence[J]. Journal of Power Sources, 2015, 293: 187-195.

[30]. M. Gnahm, T. Pajkossy,D. M. Kolb. The interface between Au(111) and an ionic liquid[J]. Electrochimica Acta, 2010, 55(21): 6212-6217.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.