Corresponding Author

Hong-yu WANG(hongyuwang@ciac.ac.cn)


Anions can be electrochemically intercalated into a graphite electrode with a reversible capacity as high as 120 mAh·g-1 at the high potential near 5 V vs. Li/Li+. Besides, graphite is environmentally benign, economic and abundant in China. Therefore, graphite is a very promising positive electrode material for asymmetric capacitors using non-aqueous electrolytes. However, the performance of graphite positive electrode is quite sensitive to various affecting factors, such as the compositions of electrolyte solutions, graphite type and ambient temperature, and so on. In the platform of activated carbon/graphite capacitors, the electrochemical behavior of anion-graphite intercalation compounds can be systematically studied by a series of in situ electrochemical techniques. Future development in this type of electrode materials has been anticipated in terms of new electric energy storage devices under different circumstances.

Graphical Abstract


Anion-graphite intercalation compounds, Electrochemical capacitors, Solvation effect, Dual-ion cells.

Publication Date


Online Available Date


Revised Date


Received Date



[1] Becker H I. Low voltage electrolytic capacitor. United States Patent, 2800616[P].1957.

[2] Rightmire A R. Electrical energy storage apparatus. United States Patent, 3288641[P].1966.

[3] Sekido S (関户聡), Yoshino Y (吉野庸三), Muranaka T (村中孝義), et al. A electric double layer capacitor using organic electrolyte[J]. Denki Kagaku (電気化学), 1980, 48(1): 40-45.

[4] Hiratsuka K (平塚和也), Sanada Y (真田恭宏), Morimoto T (森本剛), et al. Evaluation of Activated Carbon Electrodes for Electric Double Layer Capacitors Using an Organic Electrolyte Solution[J]. Denki Kagaku (電気化学), 1991, 59(7): 607-613.

[5] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon fiber cloth polarizable electrodes for electric double-layer capacitors[J]. J. Electrochem. Soc., 1990, 137(10): 3052-3057.

[6] Morimoto T, Hiratsuka K, Sanada Y, et al. Electric double-layer capacitor using organic electrolyte[J]. J. Power Sources, 1996, 60(2): 239-247.

[7] Yata Y, Okamoto E, Satake H, et al. Polyacene capacitors [J]. J. Power Sources, 1996, 60(2): 207-212.

[8] Amatucci G G, Badway F, DuPasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. J. Electrochem. Soc., 2001, 148(8): A930-A939.

[9] Yoshino. A, Tsubata T, Shimoyamada M, et al. Development of a lithium-type advanced energy storage device[J]. J. Electrochem. Soc., 2004, 151(12): A2180-A2182.

[10] Li H, Cheng Li, Xia Y Y. A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and activated carbon[J]. Electrochem. & Solid-State Lett., 2005, 8(9): A433-A436.

[11] Wang H, Yoshio M. Graphite, a suitable positive electrode material for high-energy electrochemical capacitors[J]. Electrochem. Commun., 2006, 8(9): 1481-1486.

[12] Wang H, Yoshio M, Thapa A K, et al. From symmetrical AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors[J]. J. Power Sources, 2007, 169(2): 375-380.

[13] Wang H, Yoshio M. Effect of cation on the performance of AC/graphite capacitors[J]. Electrochem. Commun., 2008, 10(3): 382-386.

[14] Wang H, Yoshio M. Performance of AC/graphite capacitors at high weight ratios of AC/graphite[J]. J. Power Sources, 2008, 177(2): 681-684.

[15] Wang H, Yoshio M. The effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors[J]. J. Power Sources, 2010, 195(1): 389-392.

[16] Wang H, Yoshio M. KF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors[J]. J. Power Sources, 2010, 195(4): 1263-1265.

[17] Wang H, Yoshio M. Suppression of PF6- intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors[J]. Chem. Commun., 2010, 46(9): 1544-1546.

[18] Wang Y, Zheng C, Qi L, et al. Utilization of (oxalate)borate-based organic electrolytes in activated carbon/graphite capacitors[J]. J. Power Sources, 2011, 196(23): 10507-10510.

[19] Tian S, Qi L, Yoshio M, et al. Tetramethyl ammonium difluoro(oxalate)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors[J]. J. Power Sources, 2014, 256: 404-409.

[20] Tian S, Qi L, Wang H. Difluoro(oxalate)borate anion intercalation into graphite electrode from ethylene carbonate[J]. Solid State Ionics, 2016, 291: 42-46.

[21] Gao J, Yoshio M, Qi L, et al. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite[J]. J. Power Sources, 2015, 278: 452-457.

[22] Gao J, Tian S, Qi L, et al. Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors[J]. J. Power Sources, 2015, 297: 121-126.

[23] Gao J, Tian S, Qi L, et al. Intercalation manners of Perchlorate anion into graphite electrode from organic solutions[J]. Electrochim. Acta, 2015, 176: 22-27.

[24] Yoshio M, Nakamura H, Wang H. Novel megalo-capacitance capacitor based on graphitic carbon cathode[J]. Electrochem. & Solid-State Lett., 2006, 9(12): A561-A563.

[25] Besenhard J O, Winter M, Yang J, et al. Film mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J], J. Power Sources, 1995, 54(2): 228-231.

[26] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.

[27] Zhao L, Qi L, Wang H. Sodium titanate nanatube/graphite, an electric energy storage device using Na+-based organic electrolytes[J]. J. Power Sources, 2013, 242: 597-603.

[28] Zheng C, Yoshio M, Qi L, et al. A 4V-electrochemical capacitor using electrode and electrolyte materials free of metals[J]. J. Power Sources, 2014, 260: 19-26.

[29] Yin J, Qi L, Wang H. Sodium titanate nanatubes as negative electrode materials for sodium-ion capacitors[J]. ACS Appl. Mater. Interfaces, 2012, 4(5): 2762-2768.

[30] Zheng C, Gao J, Yoshio M, et al. Non-porous activated carbon microbeads as a negative electrode material for asymmetric electrochemical capacitors[J]. J. Power Sources, 2013, 231: 29-33.

[31] Brenner A. Note on an organic-electrolyte cell with a high voltage[J], J. Electrochem. Soc., 1971, 118(3):461-462.

[32]Dunning J S, Tiedemann W H; Hsueh L, et al. A secondary, nonaqeous solvent battery[J], J. Electrochem. Soc., 1971, 118(12): 1886-1890.

[33] Takada Y(高田怡行), Miyake Y(三宅義造). Behavior of some carbon electrodes in organic electrolytes[J], Denki Kagaku (電気化学), 1975, 43(6): 329-333.

[34] Deshpande S L, Bennion D N. Lithium dimethyl sulfite graphite cell[J], J. Electrochem. Soc., 1978, 125(5): 687-692.

[35]Ohzuku T(小槻勉), Takehara Z(竹原善一郎), Yoshizawa S(吉澤四郎). A graphite compound as a cathode for rechargeable nonaqueous lithium battery[J], Denki Kagaku (電気化学), 1978, 46(8): 438-441.

[36] Matsuda Y, Morita M, Katsuma H. Graphite fiber as a positive electrode of rechargeable lithium cells[J], J. Electrochem. Soc., 1984, 131(1): 104-106.

[37] Santhanam R, Noel M. Electrochemical intercalation of cationic and anionic species from a lithium percolate-propylene carbonate system—a rocking-chair type of dual-intercalation system[J], J. Power Sources, 1998, 76(2): 147-152.

[38] Placke T, Fromm O, Lux S F, et al. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells[J], J. Electrochem. Soc., 2012, 159(11) : A1755-A1765.

[39]Lin M, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J], Nature, 2015, 520(7547): 325-328.

[40]Zhang X, Sukpirom N, Lerner M M. Graphite intercalation of bis(trifluoromethanesulfonyl)imide and other anions with perfluoroalkanesulfonyl substituents[J], Mater. Res. Bull., 1999, 34(3): 363-372.

[41]Yan W, Lerner M M. Electrochemical preparation of graphite bis(trifluoromethanesulfonyl)imide[J], J. Electrochem. Soc., 2001, 148(6): D83-D87.

[42]Seel J A, Dahn J R. Electrochemical intercalation of PF6- into graphite[J], J. Electrochem. Soc., 2000, 147(3): 892-898.

[43] Dahn J R, Seel J A. Energy and capacity projections for practical dual-graphite cells[J], J. Electrochem. Soc., 2000, 147(3): 899-901.

[44]Hahn M, Barbieri O, Gallay R, et al. A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain[J], Carbon, 2006, 44(12): 2523-2533.

[45] Hardwick L J, Hahn M, Ruch P, et al. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite[J], Electrochim. Acta, 2006, 52(2): 675-680.

[46]Ruch P W, Hahn M, Rosciano F, et al. A. In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4- into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes[J], Electrochim. Acta, 2007, 53(3): 1074-1082.

[47] Placke T, Rothermel S, Fromm O, et al. Influence of graphite characteristics on the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into a graphite-based cathode[J], J. Electrochem. Soc., 2013, 160(11): A1979-A1991.

[48] Rothermel S, Meister P, Schmuelling G, et al. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte[J], Energy Environ. Sci., 2014, 7(10): 3412-3423.

[49] Meister P, Fromm O, Rothermel S, et al. Sodium-based vs.lithium-based dual-ion cells: electrochemical study of anion intercalation/de-intercalation into/from graphite and metal plating/dissolution behavior[J], Electrochim. Acta, 2017, 228:18-27.

[50] Ishihara T, Yokoyama Y, Kozono F, et al. Intercalation of PF6- anion into graphitic carbon with nano pore for dual carbon cell with high capacity[J], J. Power Sources, 2011, 196(16): 6956-6959.

[51] Miyoshi S, Nagano H, Fukuda T, et al. Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte[J], J. Electrochem. Soc., 2016, 163(7): A1206-A1213.

[52] Thapa A K, Park G, Nakamura H, et al. Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system[J], Electrochim. Acta, 2010, 55(24): 7305-7309.

[53] Gunawardhana N, Park G, Dimov N, et al. Constructing a novel and safer energy storing sytem using a graphite cathode and a MoO3 anode[J], J. Power Sources, 2011, 196(18): 7886-7890.

[54]Gunawardhana N, Park G, Thapa A K, et al. Performance of a graphite (KS-6)/MoO3 energy storing system[J], J. Power Sources, 2012, 203: 257-261.

[55]Park G, Gunawardhana N, Lee C, et al. Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode[J], J. Power Sources, 2013, 236: 145-150.

[56] Li R (李然), Zhang H (张浩), Zhang X L (张香兰), et al. Preparations and capacitive performance of the anion intercalation graphite materials as positive electrode materials[J]. Chem. J of Chinese Universities (高等学校化学学报), 2013, 34(4): 959-963.

[57] Read J A, Cresce A V, Ervin M H, et al. Dual-graphite chemistry enabled by a high voltage electrolyte[J], Energy Environ. Sci., 2014, 7(2): 617-620.

[58] Read J A. In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent[J], J. Phys. Chem. C, 2015, 119(16): 8438-8446.

[59] Hu X (胡晓艳), Alice A, Yan J (颜佳伟), et al. Intercalation of ClO4- into HOPG investigated by EC-STM[J]. Journal of Electrochemistry (电化学), 2015, 21(6): 560-565.

[60] Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery[J], Adv. Energy Mater., 2016, 6(11), 1502588.

[61] Tong X, Zhang F, Ji B, et al. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual –ion batteries[J], Adv. Mater., 2016, 28(45): 9979-9985.

[62] Qin P, Wang M, Li N, et al. Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries[J], Adv. Mater., 2017, 1606805

[63] Sheng M, Zhang F, Ji B, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J], Adv. Energy Mater., 2017, 1601963.

[64] Wang S, Jiao S, Tian D, et al. A novel ultrafast rechargeable multi-ions battery[J], Adv. Mater., 2017, 1606349.

[65] Wu M S, Xu B, Chen L Q, et al. Geometry and fast diffusion of AlCl4 cluster intercalated in graphite[J], Electrochim. Acta, 2016, 195: 158-165.

[66] Wu M S, Xu B, Ouyang C Y. Further discussions on the geometry and fast diffusion of AlCl4 cluster intercalated in graphite[J], Electrochim. Acta, 2017, 223: 137-139.

[67] Fan L, Liu Q, Chen S, et al. Soft carbon as anode for high-performance sodium-based dual-ion full battery[J], Adv. Energy Mater., 2017:1602778.

[68]Fan H, Gao J, Qi L, et al. Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions[J]. Electrochim. Acta, 2016, 189: 9-15.

[69]Fan H, Qi L, Yoshio M, et al. Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate [J]. Solid State Ionics, 2017, 304: 107-112.

[70] Fan H, Qi L, Wang H. Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate[J]. Solid State Ionics, 2017, 300: 169-173.

[71] Zheng T, Reimers J N, Dahn J R. Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium[J], Phys. Rev. B, 1995, 51(2): 734-741.

[72] Takami N, Satoh A, Hara M, et al. Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes[J], J. Electrochem. Soc., 1995, 142(8), 2564-2571.

[73] Zaghib K, Tatsumi K, Abe H, et al. Optimization of the dimensions of vapor-grown carbon fibers for use as negative electrodes in lithium-ion rechargeable cells[J], J. Electrochem. Soc., 1998, 145(1): 210-215.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.