Corresponding Author

Liang ZHOU(liangzhou@whut.edu.cn);
Li-qiang MAI(mlq518@whut.edu.cn)


Titanium dioxide (TiO2) represents a stable, low-cost, and nontoxic anode material for sodium-ion batteries (SIBs). However, the low electrical conductivity limits its electrochemical activity (specific capacity) and rate capability, hindering its widespread applications. In this article, we show that different crystal forms of TiO2 have different pore structures, resulting in the distinct sodium storage capacities. Accordingly, the article introduces how TiO2 microstructures influence sodium storage. The nanoparticle structure can improve the rate performance of the material due to its short ion diffusion distance, and the internal cavity of the hollow structure is beneficial to cycle stability. In addition, we conclude that the conductivity of the material can be enhanced by oxygen defects or doping metals/non-metals. Lots of experimental results show that TiO2 with carbon or metal composite structures has excellent electrochemical performance. In brief, this article comprehensively summarizes the effects of microstructure, oxygen vacancy, doping, and compositing on the conductivity and electrochemical performances of TiO2-based anode materials. Beyond that, future research directions for TiO2-based anode materials are also predicted at the end of this review.

Graphical Abstract


TiO2, sodium-ion battery, nanocomposites, doping, oxygen vacancy

Publication Date


Online Available Date


Revised Date


Received Date



[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510.
[3] Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications[J]. Journal of Power Sources, 2011, 196(3): 1593-1598.
[4] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0 789.
[5] Newman G H, Klemann L P. Ambient temperature cycling of an Na-TiS2 cell[J]. Journal of The Electrochemical Society, 1980, 127(10): 2097-2099.
[6] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[7] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices [J]. Science, 2011, 334(6058): 928-935.
[8] Zhang J F(张京飞), Lu J(陆静), Yang X Y(杨晓宇), et al. Synthesis of porous carbon nanosheets for application in sodium-ion battery[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 548-553.
[9] Balogun M S, Luo Y, Qiu W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.
[10] Xie X Q, Kretschmer K, Zhang J Q, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy, 2015, 13: 208-217.
[11] Luo W, Lorger S, Wang B, et al. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures[J]. Chemical Communications, 2014, 50(41): 5435-5437.
[12] Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465-2468.
[13] Kim Y, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry, 2015, 45(50): 11980-11992.
[14] Su H, Jaffer S, Yu H. Transition metal oxides for sodium-ion batteries[J]. Energy Storage Materials, 2016, 5: 116-131.
[15] Xu Z L, Lim K, Park K Y, et al. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(29): 1802099.
[16] Kim K T, Ali G, Chung K Y, et al. Anatase titania nano-rods as an intercalation anode material for rechargeable sodium batteries[J]. Nano Letters, 2014, 14(2): 416-422.
[17] Wu L M, Buchholz D, Bresser D, et al. Anatase TiO2 nanoparticles for high power sodium-ion anodes[J]. Journal of Power Sources, 2014, 251(4): 379-385.
[18] Longoni G, Cabrera R L P, Polizzi S, et al. Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties[J]. Nano Letters, 2017, 17(2): 992-1000.
[19] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters, 2011, 2 (20): 2560-2565.
[20] Bi Z, Paranthaman M P, Menchhofer P A, et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries[J]. Journal of Power Sources, 2013, 222(2): 461-466.
[21] Su D W, Dou S X, Wang G X. Anatase TiO2 : Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(17): 6022-6029.
[22] Yang F H, Zhang Z A, Han Y, et al. TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries[J]. Electrochimica Acta, 2015, 178: 871-876.
[23] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters, 2011, 2(20): 2560-2565.
[24] Wang G M, Yang Y, Han D D, et al. Oxygen defective metal oxides for energy conversion and storage[J]. Nano Today, 2017, 13: 23-29.
[25] Chen J, Song W X, Hou H S, et al. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 25(43): 6793-6801.
[26] Chen J, Ding Z Y, Wang C, et al. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies[J]. ACS Applied Materials Interfaces, 2016, 8(14): 9142-9151.
[27] Babu B, Ullattil S G, Prasannachandran R, et al. Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5401-5412.
[28] Zhang Y, Ding Z Y, Foster C W, et al. Oxygen vacancies evoked blue TiO2(B) nanobelts with effciency enhancement in sodium storage behaviors[J]. Advanced Functional Materials, 2017, 27(27): 1700856.
[29] Wu Y, Liu X W, Yang Z Z, et al. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries[J]. Small, 2016, 12(26): 3522-3529.
[30] Liu S A , Cai Z Y , Zhou J, et al. Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications[J]. Journal of Materials Chemistry A, 2016, 4(47): 18278-18283.
[31] Ni J F, Fu S D, Wu C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Advanced Materials, 2016, 28(11): 2259-2265.
[32] Hwang J Y, Myung S T, Lee J H, et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes[J]. Nano Energy, 2015, 16: 218-226.
[33] Wang B F, Zhao F, Du G D, et al. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials Interfaces, 2016, 8(25): 16009-16015.
[34] He H N, Sun D, Zhang Q, et al. Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties[J]. ACS Applied Materials Interfaces, 2017, 9(7): 6093-7103.
[35] Hong Z S, Kang M L, Chen X H, et al. Synthesis of mesoporous Co2+-doped TiO2 nanodisks derived from metal organic frameworks with improved sodium storage performance[J]. ACS Applied Materials Interfaces, 2017, 9(37): 32071-32079.
[36] Yan D, Yu C Y, Li D S, et al. Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping[J]. Journal of Materials Chemistry A, 2016, 4(28): 11077-
[37] Yan D, Yu C Y, Bai Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications, 2015, 51(39): 8261-8264.
[38] Usui H,Yoshioka S, Wasada K, et al. Nb-doped rutile TiO2: a potential anode material for Na-ion battery[J]. ACS Applied Materials Interfaces, 2015, 7(12): 6567-6573.
[39] Harunsani M, Oropeza F E, Palgrave R G, et al. Electronic and structural properties of SnxTi1-xO2 (0.0 ‰¤ x ‰¤ 0.1) solid solutions[J]. Chemistry of Materials, 2010, 22(4): 1551-
[40] Yan D, Yu C Y, Bai Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications, 2015, 51(39): 8261-8264.
[41] Lee J, Chen Y M, Zhu Y, et al. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials Interfaces, 2014, 6(23): 21011-21018.
[42] Ge Y Q, Jiang H, Zhu J D, et al. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries[J]. Electrochimica Acta, 2015, 157: 142-148.
[43] Yang Y C, Ji X B, Jing M J, et al. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5648-5655.
[44] Chu C X, Yang J, Zhang Q Q, et al. Biphase-interface enhanced sodium storage and accelerated charge transfer: flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries[J]. ACS Applied Materials Interfaces, 2017, 9(50): 43648-43656.
[45] Bresser D, Oschmann B, Tahir M N, et al. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes[J]. Journal of The Electrochemical Society, 2015, 162(29): 3013-3020.
[46] Tahir M N, Oschmann B, Buchholz D, et al. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(4): 1501489.
[47] Cha HA, Jeong H M, Kang J K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(15): 5182-5186.
[48] Liu H Q, Cao K Z, Xu X H, et al. Ultrasmall TiO2 nano-particles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11239-11245.
[49] Hong Z S, Zhou K Q, Zhang J W, et al. Self-assembled synthesis of mesocrystalline TiO2@C-rGO hybrid nano-structures for highly reversible sodium storage[J]. Crystal Growth & Design, 2016, 16(11): 6605-6612.
[50] Le Z Y, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-Graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2952-2960.
[51] Xu G L, Xiao L S, Sheng T, et al. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid[J]. Nano Letters, 2018, 18(1): 336-346.
[52] He H N, Gan Q M, Wang H Y, et al. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries[J]. Nano Energy, 2018, 44: 217-227.
[53] Guan D D, Yu Q, Xu C, et al. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance[J]. Nano Research, 2017, 10(12): 4351-4359.
[54] Zhang Y, Wang C W, Hou H S, et al. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances[J]. Advanced Energy Materials, 2017, 7(4): 1600173.
[55] Xu Y, Zhou M, Wen L Y, et al. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes[J]. Chemistry of Materials, 2015, 27(12): 4274-4280.
[56] Wang N N, Bai Z C, Qian Y T, et al. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries[J]. Advanced Materials, 2016, 28(21): 4126-4133.
[57] Wang N N, Bai Z C, Qian Y T, et al. One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 447-454.
[58] Mao M L, Yan F L, Cui C Y, et al. Pipe-wire TiO2-Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries[J]. Nano Letters, 2017, 17(6): 3830-3836.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.