Corresponding Author

Rui WEN(ruiwen@iccas.ac.cn);
Li-jun WAN(wanlijun@iccas.ac.cn)


Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for the next-generation energy storage devices. Fundamental understanding of the structure and evolution processes at electrode-electrolyte interfaces is essential to the further development. In this review, we summarize recent advances in the interfacial observations by means of various in situ/operando visualization techniques, including scanning probe microscopy (SPM), electron microscopy (EM), X-ray microscopy (XRM) and optical microscopy (OM). The real-time investigation provides important evidence for the morphology and component changes including S/Li2S transformation, polysulfide dissolution on cathodes and Li/solid electrolyte interphase (SEI) evolution on anodes, which presents reaction mechanism and design principles for Li-S battery optimization.

Graphical Abstract


in situ visualization, Li-S batteries, electrode-electrolyte interface, Li anode, electrode processes

Publication Date


Online Available Date


Revised Date


Received Date



[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[2] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200.
[3] Yu S H, Feng X R, Zhang N, et al. Understanding conversion-type electrodes for lithium rechargeable batteries[J]. Accounts of Chemical Research, 2018, 51(2): 273-281.
[4] Agostini M, Lee D J, Scrosati B, et al. Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery[J]. Journal of Power Sources, 2014, 265: 14-19.
[5] Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826.
[6] Chen Y, Niu S, Lv W, et al. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries[J]. Chinese Chemical Letters, 2019, 30(2): 521-524.
[7] Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 142273.
[8] Cheng X B, Zhang R, Zhao C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016, 3(3): 1500213.
[9] Li W J(李文俊), Zheng J Y(郑杰允), Gu L(谷林), et al. Researches on in-situ and ex-situ characterization techniques in lithium batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(2): 99-114.
[10] Xu R, Lu J, Amine K, et al. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500408.
[11] Zhao E Y, Nie K H, Yu X Q, et al. Advanced characterization techniques in promoting mechanism understanding for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707543.
[12] Tan J, Liu D N, Xu X, et al. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review[J]. Nanoscale, 2017, 9(48): 19001-19016.
[13] Zhang G, Zhang Z W, Peng H J, et al. A toolbox for lithium-sulfur battery research:Methods and protocols[J]. Small Methods, 2017, 1: 1700134
[14] Lang S Y, Shi Y, Guo Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2016, 55(51): 15835-15839.
[15] Lang S Y, Shi Y, Guo Y G, et al. High-temperature formation of a functional film at the cathode/electrolyte interface in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie-International Edition, 2017, 56(46): 14433-14437.
[16] Lang S Y, Xiao R J, Gu L, et al. Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics[J]. Journal of the American Chemical Society, 2018, 140(26): 8147-8155.
[17] Xiong S Z, Xie K, Diao Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries[J]. Electrochimica Acta, 2012, 83: 78-86.
[18] Xu R, Belharouak I, Zhang X F, et al. Insight into sulfur reactions in Li-S Batteries[J]. ACS Applied Materials Interfaces, 2014, 6(24): 21938-21945.
[19] Zhou W D, Wang C M, Zhang Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries[J]. Advanced Energy Material, 2015, 5(16): 1401752.
[20] Xu Z L, Huang J Q, Chong W G, et al. In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance[J]. Advanced Energy Materials, 2017, 7(9): 1602078.
[21] Kim H, Lee J T, Magasinski A, et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes[J]. Advanced Energy Material, 2015, 5(24): 1501306.
[22] Yu W J, Liu C, Zhang L L, et al. Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles[J]. Advanced Science, 2016, 3(10): 1600113.
[23] Yuan Y F, Tan G Q, Wen J G, et al. Encapsulating various sulfur allotropes within graphene nanocages for long-lasting lithium storage[J]. Advanced Functional Materials, 2018, 28(38): 1706443.
[24] Tang W, Chen Z X, Tian B B, et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes[J]. Journal of the American Chemical Society, 2017, 139(29): 10133-10141.
[25] Tan G Q, Xu R, Xing Z Y, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2(7): 17090.
[26] Hwa Y, Seo H K, Yuk J M, et al. Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells[J]. Nano Letters, 2017, 17(11): 7086-7094.
[27] Yang Z Z, Zhu Z Y, Ma J, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM[J]. Advanced Energy Material, 2016, 6(20): 1600806.
[28] Qiu Y C, Rong G L, Yang J, et al. Highly nitridated graphene-Li2S cathodes with stable modulated cycles[J]. Advanced Energy Materials, 2015, 5(23): 1501369.
[29] Luntz A C, Voss J, Reuter K, et al. Interfacial challenges in solid-state Li ion batteries[J]. Journal of Physical Chemistry Letters, 2015, 6(22): 4599-4604.
[30] Marceau H, Kim C S, Paolella A, et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. Journal of Power Sources, 2016, 319: 247-254.
[31] Mehdi B L, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM[J]. Nano Letters, 2015, 15(3): 2168-2173.
[32] Leenheer A J, Jungjohann K L, Zavadil K R, et al. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy[J]. ACS Nano, 2015, 9(4): 4379-4389.
[33] Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
[34] Orsini F, Pasquier A D, Beaudoin B, et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. Journal of Power Sources, 1998, 76(1): 19-29.
[35] Aurbach D, Gofer Y, et al. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems[J]. Journal of Electrochemical Society, 1989, 136(11): 3198-3205.
[36] Aurbach D, Gofer Y, Moshe B Z, et al. The behavior of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency[J]. Journal of Electroanalytical Chemistry, 1992, 339(1/2): 451-471.
[37] Dolle M, Sannier L, Beaudoin B, et al. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12): A286-A289.
[38] Sagane F, Shimokawa R, Sano H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[39] Rong G L, Zhang X Y, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13): 1606187.
[40] Li Y J, Jiao J Y, Bi J P, et al. Controlled deposition of Li metal[J]. Nano Energy, 2017, 32: 241-246.
[41] Xin S, Guo Y G, Wan L J, et al. Nanocarbon networks for advanced rechargeable lithium batteries[J]. Accounts of Chemical Research, 2012, 45(10): 1759-1769.
[42] Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058.
[43] Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623.
[44] Yan K, Lu Z D, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1(3): 16010.
[45] Zeng Z Y, Liang W I, Liao H G, et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4): 1745-1750.
[46] Sacci R L, Dudney N J, More K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communication, 2014, 50(17): 2104-2107.
[47] Wang Z Y, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767.
[48] Ma C, Cheng Y Q, Yin K B, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036.
[49] Li Y Z, Li Y B, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[50] Li Y Z, Huang W, Li Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[51] Nelson J, Misra S, Yang Y, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(14): 6337-6343.
[52] Nelson J, Yang Y, Misra S, et al. Identifying and managing radiation damage during in situ transmission X-ray microscopy of Li-ion batteries[M]. X-Ray Nanoimaging: Instruments and Methods, Proceedings of SPIE, 2013, 8851: UNSP 88510B.
[53] Lin C N, Chen W C, Song Y F, et al. Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy[J]. Journal of Power Sources, 2014, 263: 98-103.
[54] Yu X Q, Pan H L, Zhou Y N, et al. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during the first cycle by in situ X-ray fluorescence microscopy[J]. Advanced Energy Materials, 2015, 5(16): 1500072.
[55] Yu S H, Huang X, Schwarz K, et al. Direct visualization of sulfur cathodes: New insights into Li-S batteries via operando X-ray based methods[J]. Energy Environmental Science, 2018, 11(1): 202-210.
[56] Risse S, Jafta C J, Yang Y, et al. Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography[J]. Physical Chemistry Chemical Physics, 2016, 18(15):10630-10636.
[57] Yang Y, Risse S, Mei S, et al. Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography[J]. Energy Storage Materials, 2017, 9: 96-104.
[58] Yermukhambetova A, Tan C, Daemi S R, et al. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography[J]. Scientific Reports, 2016, 6: 35291.
[59] Tan C, Daemi S R, Brett D J L, et al. Investigating the three-dimensional microstructural characteristics of lithium-sulfur electrodes with X-ray micro-tomography[J]. ECS Transactions, 2017, 77(11): 447-455.
[60] Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2013, 13(1): 69-73.
[61] Sun F, Dong K, Osenberg M, et al. Visualizing morphological and compositional evolution of interface of InLi-anode|thio-LISION electrolyte in all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496.
[62] Sun Y M, Seha Z W, Li W Y, et al. In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries[J]. Nano Energy, 2015, 11:579-586.
[63] Osaka T, Homma T, Momma T, et al. In situ observation of lithium deposition processes in solid polymer and gel electrolytes[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 153-156.
[64] Howlett P C, MacFarlane D R, Hollenkamp A F, et al. A sealed optical cell for the study of lithium-electrode|electrolyte interfaces[J]. Journal of Power Sources, 2003, 114: 277-284.
[65] Crowther O, West A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of The Electrochemical Society, 2008, 155(11): A806-A811. [66] Nishikawa K, Mori T, Tetsuo Nishida, et al. In situ observation of dendrite growth of electrodeposited Li metal[J]. Journal of The Electrochemical Society, 2010, 157(11): A1212-A1217.
[67] Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536.
[68] Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119.
[69] Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy Environmental Science, 2016, 9(10): 3221-3229.
[70] Bai P, Guo J Z, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separator[J]. Joule, 2018, 2(11): 1-16.
[71] Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: 7436.
[72] Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie-International Edition, 2018, 57(19): 5301-5305.
[73] Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2: 258-270.
[74] Zhang Y J, Bai W Q, Wang X L, et al. In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode[J]. Journal of Materials Chemistry A, 2016, 4(40): 15597-15604.
[75] Li Q, Quan B B, Li W J, et al. Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure[J]. Nano Energy, 2018, 45: 463-470.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.