Corresponding Author

Gui-ling WANG(wangguiling@hrbeu.edu.cn)


The electrodes of Ni foam supported NiCo2O4 nanowires were prepared by hydrothermal method, followed by a thermal treatment in air, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the NiCo2O4 nanowires had a diameter of about 50 nm with a length up to 3 ~ 5 μm. The catalytic performances of the Ni foam supported NiCo2O4 nanowires for H2O2 electrooxidation were studied by cyclic voltammetry and chronoamperometry. The results show that the Ni foam supported NiCo2O4 nanowires electrode exhibited superior activity, stability, and mass transport property for H2O2 electrooxidation. A current density of 380 mA·cm -2 was achieved at 0.3 V in 0.4 mol·L -1 H2O2 and 2 mol·L -1 NaOH at room temperature.

Graphical Abstract


hydrogen peroxide electrooxidation, hydrothermal method, Ni foam, NiCo2O4 nanowires

Publication Date


Online Available Date


Revised Date


Received Date



[1]Cao D X, Chao J D, Sun L M , et al. Catalytic behavior of Co3O4 in electroreduction of H2O2[J]. Journal of Power Sources, 2008,179(1):87-91.
doi: 10.1016/j.jpowsour.2007.12.076 URL

[2]Cai Z( 蔡庄), Wang G L( 王贵领), Song C Y( 宋聪颖 ), et al. Preparation of a binder free electrode of NiAg supported on graphite modified A4 paper and its electrochemical performance for H2O2 reduction[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2018,39(5):1041-1047.

[3]Song C Y( 宋聪颖), Sun X( 孙逊), Ye K( 叶克 ), et al. Electrocatalytic activity of MnO2 supported on reduced graphene oxide modified Ni foam for H2O2 reduction[J]. Acta Chimica Sinica( 化学学报), 2017,75(10):1003-1009.
doi: 10.6023/A17070298 URL

[4]Cheng K( 程魁), Yang F( 杨帆), Yan P( 闫鹏 ) , et al. Preparation of Co3O4 nanosheet supported on Ni foam and its catalytic performance for H2O2 electroreduction[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2014,35(1):110-114.
doi: 10.7503/cjcu20130504 URL

[5]Yang W Q, Yang S H, Sun W , et al. Nanostructured silver catalyzed nickel foam cathode for an Al- H2O2 fuel cell[J]. Journal of Power Sources, 2006,160(2):1420-1424.
doi: 10.1016/j.jpowsour.2006.02.015 URL

[6]Tian Y M( 田永梅), Lei T( 雷婷), Wang G L( 王贵领 ), et al. Al-H2O2 semi-fuel cell using Ni foam supported NiCo2O4 nanowire arrays as cathode[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2011,32(10):2382-2386.

[7]Miley G H, Luo N, Mather J , et al. Direct NaBH4/H2O2 fuel cells[J]. Journal of Power Sources, 2007,165(2):509-516.
doi: 10.1016/j.jpowsour.2006.10.062 URL

[8]Wang G, Ye K, Shao J Q , et al. Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2018,43(19):9316-9325.
doi: 10.1016/j.ijhydene.2018.03.221 URL

[9]Yan P( 闫鹏), Zhang D M( 张栋铭), Cheng K( 程魁 ) , et al. Preparation of Pd-Ag/C@TiO2 core/shell nanorods as catalysts for electrooxidation of NaBH4[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2015,36(9):1801-1806.
doi: 10.7503/cjcu20150009 URL

[10]Zhang D M, Wang G L, Cheng K , et al. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation[J]. Journal of Power Sources, 2014,245:482-486.
doi: 10.1016/j.jpowsour.2013.06.161 URL

[11]Wang X, Ye K, Sun C , et al. Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells[J]. Journal of Colloid & Interface Science, 2017,498:239-247.
doi: 10.1016/j.jcis.2017.03.071 URL pmid: 28342307

[12]Sanli A E, Aytac A . Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel celll[J]. International Journal of Hydrogen Energy, 2011,36(1):869-875.
doi: 10.1016/j.ijhydene.2010.09.038 URL

[13]Yang F, Cheng K, Mo Y H , et al. Direct peroxide-peroxide fuel cell - Part 1: The anode and cathode catalyst of carbon fiber cloth supported dendritic Pd[J]. Journal of Power Sources, 2012,217:562-568.
doi: 10.1016/j.jpowsour.2012.07.019 URL

[14]Yamazaki S, Siroma Z, Senoh H , et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. Journal of Power Sources, 2008,178(1):20-25.
doi: 10.1016/j.jpowsour.2007.12.013 URL

[15]Sanli A E . A possible future fuel cell: the peroxide/peroxide fuel cell[J]. International Journal of Energy Research, 2013,37(12):1488-1497.
doi: 10.1088/1752-7155/6/1/019001 URL pmid: 22366644

[16]Wang X, Ye K, Zhang H Y , et al. Enhanced performance of direct peroxide-peroxide fuel cells by employing three-dimensional Ni and Co@TiC nanoarrays anodes[J]. International Journal of Energy Research, 2017,42(36):15044-15053.

[17]Yamada Y, Yoneda M, Fukuzumi S . A robust onecompartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions[J]. Chemistry - A European Journal, 2013,19(35):11733-11741.
doi: 10.1002/chem.201300783 URL pmid: 23868499

[18]Ye K, Guo F, Gao Y Y , et al. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2015,300:147-156.

[19]Yamada Y, Yoshida S, Honda T , et al. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energy & Environmental Science, 2011,4(8):2822-28225.

[20]Shaegh SAM, Nguyen NT, Ehteshami SMM , et al. A membraneless hydrogen peroxide fuel cell using Prussian blue as cathode material[J]. Energy & Environmental Science, 2012,5(8):8225-8228.

[21]Meng G, Yang Q, Wu X C , et al. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor[J]. Nano Energy, 2016,30:831-839.

[22]Wang G L( 王贵领), Liu J C( 刘进程), Sun K N( 孙克宁 ), et al. Electrocatalytic activities of Au2MmNi3.2Al0.2Mn0.6-Co1.00 for borohydride oxidation[J]. Journal of Electrochemistry( 电化学), 2009,15(4):450-453.

[23]Zhu D W( 朱丁旺), Chen D D( 陈丹丹), Li B J( 李必进 ), et al. A study of Pd-Ir on nickel foam cathode for aluminum-hydrogen peroxide semi-fuel cells[J]. Journal of Electrochemistry( 电化学), 2008,14(3):292-297.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.