Corresponding Author

Zhi-pan LIU(zpliu@fudan.edu.cn)


Solid/liquid double layer is of fundamental importance in electrochemistry. It has been a challenge and focus to understand the equilibrium and the dynamic phenomena (e.g., chemical reactions) at the electrode/electrolyte double layer in a unified theoretical framework. In recent years, rapid expansion and development have been done in the application of first principles density function theory (DFT) simulation on the double layer. This article reviews the current theoretical methods for electrochemistry modeling, such as reaction center model, thermodynamic method and double reference model. The progress in the computation procedures based on first principles periodic continuum solvation method (DFT/CM-MPB) for obtaining the differential capacitance, surface phase, charge transfer coefficient (CTC) and deducing the potential-dependent reaction rate are summarized in detail. Representative reactions, namely, hydrogen evolution reactions, are selected to illustrate how the theoretical methods are applied to compute quantitatively the kinetics of multiple-step electrochemical reactions.

Graphical Abstract


electrode/electrolyte double layer, periodic continuum solvation method, first principles calculations, differential capacitance, charge transfer coefficient, Tafel kinetics

Publication Date


Online Available Date


Revised Date


Received Date



[1] Iwasita T, Xia X H . Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge[J]. Journal of Electroanalytical Chemistry, 1996,411(1/2):95-102.

[2] Garcia-Araez N, Climent V, Herrero E , et al. Thermodynamic approach to the double layer capacity of a Pt(111) electrode in perchloric acid solutions[J]. Electrochimica Acta, 2006,51(18):3787-3793.

[3] Cuesta A . Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111)[J]. Surface Science, 2004,572(1):11-22.
doi: 10.1016/j.aca.2006.05.008 URL pmid: 17723455

[4] Yang K L, Yiacoumi S, Tsouris C . Monte Carlo simulations of electrical double-layer formation in nanopores[J]. Journal of Chemical Physics, 2002,117(18):8499-8507.
doi: 10.1063/1.3033562 URL pmid: 19071935

[5] Yang K L, Yiacoumi S, Tsouris C . Canonical Monte Carlo simulations of the fluctuating-charge molecular water between charged surfaces[J]. Journal of Chemical Physics, 2002,117(1):337-345.

[6] Vossen M, Forstmann F . The structure of water at a planar wall an integral-equation approach with the central force model[J]. Journal of Chemical Physics, 1994,101(3):2379-2390.

[7] Kramer A, Vossen M, Forstmann F . The influence of image interactions on the structure of water and electrolytes in front of a metal surface[J]. Journal of Chemical Physics, 1997,106(7):2792-2800.

[8] Borukhov I, Andelman D, Orland H . Steric effects in electrolytes: A modified Poisson-Boltzmann equation[J]. Physical Review Letters, 1997,79(3):435-438.

[9] Abrashkin A, Andelman D, Orland H . Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces[J]. Physical Review Letters, 2007,99(7):077801.
doi: 10.1103/PhysRevLett.99.077801 URL pmid: 17930925

[10] Kilic M S, Bazant M Z, Ajdari A . Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations[J]. Physical Review E, 2007,75(2):021503.
doi: 10.1103/PhysRevE.75.021503 URL pmid: 17358344

[11] Spohr E, Heinzinger K . Computer-simulations of water and aqueous-electrolyte solutions at interfaces[J]. Electrochimica Acta, 1988,33(9):1211-1222.

[12] Halley J W, Mazzolo A, Zhou Y , et al. First-principles simulations of the electrode vertical bar electrolyte interface[J]. Journal of Electroanalytical Chemistry, 1998,450(2):273-280.
doi: 10.1016/s0302-4598(99)00015-x URL pmid: 10379540

[13] Huang J, Chen S . Interplay between covalent and noncovalent interactions in electrocatalysis[J]. The Journal of Physical Chemistry C, 2018,122(47):26910-26921.

[14] Spohr E . Molecular dynamics simulation studies of the density profiles of water between (9-3) Lennard-Jones walls[J]. Journal of Chemical Physics, 1997,106(1):388-391.

[15] Ou L H, Chen S L . Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT[J]. Journal of Physical Chemistry C, 2013,117(3):1342-1349.

[16] Zhang S M, Chen S L . Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction[J]. Journal of Power Sources, 2013,240:60-65.
doi: 10.1038/ncomms2586 URL pmid: 23481401

[17] Gao J, Shi S Q, Li H . Brief overview of electrochemical potential in lithium ion batteries[J]. Chinese Physics B, 2016,25(1):018210.

[18] Wang A P, Kadam S, Li H , et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithiumion batteries[J]. npj Computational Materials, 2018,4:15.

[19] Koper M T M, van Santen R A . Electric field effects on CO and NO adsorption at the Pt(111) surface[J]. Journal of Electroanalytical Chemistry, 1999,476(1):64-70.

[20] Anderson A B . Electron-density distribution-functions and the ASED-MO theory[J]. International Journal of Quantum Chemistry, 1994,49(5):581-589.

[21] Zhang T, Anderson A B . Parameter dependence in the local reaction center model for the electrochemical interface[J]. Journal of Physical Chemistry C, 2009,113(8):3197-3202.

[22] Zhang T, Anderson A B . Oxygen reduction on platinum electrodes in base: Theoretical study[J]. Electrochimica Acta, 2007,53(2):982-989.
doi: 10.1016/j.electacta.2007.08.014 URL

[23] Anderson A B, Neshev N M, Sidik R A , et al. Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory[J]. Electrochimica Acta, 2002,47(18):2999-3008.

[24] Sidik R A, Anderson A B . Density functional theory study of O-2 electroreduction when bonded to a Pt dual site[J]. Journal of Electroanalytical Chemistry, 2002,528(1/2):69-76.

[25] Anderson A B, Neshev N M . Mechanism for the electro-oxidation of carbon monoxide on platinum, including electrode potential dependence theoretical determination[J]. Journal of The Electrochemical Society, 2002,149(10):E383-E388.

[26] Cai Y, Anderson A B . The reversible hydrogen electrode: Potential-dependent activation energies over platinum from quantum theory[J]. Journal of Physical Chemistry B, 2004,108(28):9829-9833.

[27] Norskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892.

[28] Norskov J K, Bligaard T, Logadottir A , et al. Trends in the exchange current for hydrogen evolution[J]. Journal of The Electrochemical Society, 2005,152(3):J23-J26.

[29] Hansen H A, Rossmeisl J, Norskov J K . Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Physical Chemistry Chemical Physics, 2008,10(25):3722-3730.
doi: 10.1039/b803956a URL pmid: 18563233

[30] Rossmeisl J, Logadottir A, Norskov J K . Electrolysis of water on (oxidized) metal surfaces[J]. Chemical Physics, 2005,319(1/3):178-184.

[31] Skulason E, Karlberg G S, Rossmeisl J , et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode[J]. Physical Chemistry Chemical Physics, 2007,9(25):3241-3250.
doi: 10.1039/b700099e URL pmid: 17579732

[32] Skulason E, Tripkovie V, Bjorketun M E , et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations[J]. Journal of Physical Chemistry C, 2010,114(42):18182-18197.

[33] Taylor C D, Neurock M . Theoretical insights into the structure and reactivity of the aqueous/metal interface[J]. Current Opinion in Solid State & Materials Science, 2005,9(1/2):49-65.

[34] Taylor C D, Wasileski S A, Filhol J S , et al. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure[J]. Physical Review B, 2006,73(16):165402.

[35] Janik M J, Taylor C D, Neurock M . First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Topics in Catalysis, 2007,46(3/4):306-319.

[36] Taylor C, Kelly R G, Neurock M . Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode[J]. Journal of Τhe Electrochemical Society, 2007,154(3):F55-F64.

[37] Cao D, Lu G Q, Wieckowski A , et al. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. Journal of Physical Chemistry B, 2005,109(23):11622-11633.
doi: 10.1021/jp0501188 URL pmid: 16852427

[38] Taylor C D, Kelly R G, Neurock M . A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: A probe of the electronic interactions that control chemisorption at the electrochemical interface[J]. Journal of Electroanalytical Chemistry, 2007,607(1/2):167-174.

[39] Trasatti S, Lust E . The potential of zero charge[M]. Kluwer Academic/Plenum Publishers, New York, 2002,33:1-303.

[40] Janik M J, Neurock M . A first principles analysis of the electro-oxidation of CO over Pt(111)[J]. Electrochimica Acta, 2007,52(18):5517-5528.

[41] Kilic M S, Bazant M Z, Ajdari A . Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging[J]. Physical Review E, 2007,75(2):021502.
doi: 10.1103/PhysRevE.75.021502 URL pmid: 17358343

[42] Andreussi O, Dabo I, Marzari N . Revised self-consistent continuum solvation in electronic-structure calculations[J]. The Journal of Chemical Physics, 2012,136(6):064102.
doi: 10.1063/1.3676407 URL pmid: 22360164

[43] Hamada I, Sugino O, Bonnet N , et al. Improved modeling of electrified interfaces using the effective screening medium method[J]. Physical Review B, 2013,88:155427.

[44] Gunceler D, Letchworth-Weaver K, Sundararaman R , et al. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems[J]. Modelling and Simulation in Materials Science and Engineering, 2013,21:074005.

[45] Fang Y H, Wei G F, Liu Z P . Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catalysis Today, 2013,202:98-104.

[46] Fang Y H, Wei G F, Liu Z P . Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and Tafel kinetics[J]. The Journal of Physical Chemistry C, 2013,117(15):7669-7680.

[47] Jinnouchi R, Anderson A B . Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory[J]. Physical Review B, 2008,77(24):245417.

[48] Fang Y H, Liu Z P . Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110)[J]. Journal of the American Chemical Society, 2010,132(51):18214-18222.
doi: 10.1021/ja1069272 URL pmid: 21133410

[49] Fattebert J L, Gygi F . Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. Journal of Computational Chemistry, 2002,23(6):662-666.
doi: 10.1002/jcc.10069 URL pmid: 11939598

[50] Trasatti S . Structure of the metal/electrolyte solution interface: new data for theory[J]. Electrochimica Acta, 1991,36(11/12):1659-1667.
doi: 10.1021/jp067857o URL pmid: 17469864

[51] Shang C, Liu Z P . Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution[J]. Journal of the American Chemical Society, 2011,133(25):9938-9947.
doi: 10.1021/ja203468v URL pmid: 21608993

[52] Li Y F, Liu Z P, Liu L L , et al. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. Journal of the American Chemical Society, 2010,132(37):13008-13015.
doi: 10.1021/ja105340b URL pmid: 20738085

[53] Björketun M E, Zeng Z H, Ahmed R , et al. Avoiding pitfalls in the modeling of electrochemical interfaces[J]. Chemical Physics Letters, 2013,555:145-148.

[54] Fang Y H, Liu Z P . Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. Journal of Physical Chemistry C, 2009,113(22):9765-9772.

[55] Markovic N M, Grgur B N, Ross P N . Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions[J]. Journal of Physical Chemistry B, 1997,101(27):5405-5413.

[56] Wang J X, Springer T E, Adzic R R . Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes[J]. Journal of Τhe Electrochemical Society, 2006,153(9):A1732-A1740.

[57] Wei G F, Liu Z P . Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy & Environmental Science, 2011,4(4):1268-1272.

[58] Wei G F, Fang Y H, Liu Z P . First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. Journal of Physical Chemistry C, 2012,116(23):12696-12705.

[59] Fang Y H, Liu Z P . First principles Tafel kinetics of methanol oxidation on Pt(111)[J]. Surface Science, 2015,631:42-47.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.