Abstract
Flexible biosensors have received intensive attentions for their potential applications in wearable electronics. To obtain flexible electrochemical dopamine (DA) sensors, the ordered mesoporous carbon/graphene/nickel foam (OMC/G/Ni) composite was fabricated in this work via the growth of graphene on Ni foam by chemical vapor deposition, and the formation of the OMC layer followed by the carbonization of co-assembled resol and block polymer., The monolithic Ni foam in the resultant OMC/G/Ni electrode provided an interconnected metal framework with high conductivity and good flexibility, while the OMC layer with the vertically aligned mesopore arrays rendered the composite a large electroactive surface with highly exposed active sites. More importantly, the graphene sandwiched between the OMC layer and Ni foam greatly enhanced the compatibility of each component. As the integrated electrode in DA sensor, the OMC/G/Ni electrode exhibited excellent performances with a large linear detection range (0.05 ~ 58.75 μmol·L-1), an ultra-low detection limit (0.019 μmol·L-1), high selectivity, good reproducibility and high stability, outperforming the recently reported flexible DA sensors. Moreover, the OMC/G/Ni electrode still kept the good DA sensing behavior at its bent states, demonstrating its potential for flexible biosensors.
Graphical Abstract
Keywords
ordered mesoporous carbon, graphene, nickel foam, dopamine sensor, flexible electrochemical sensor
Publication Date
2020-06-28
Online Available Date
2019-11-06
Revised Date
2019-08-02
Received Date
2019-04-28
Recommended Citation
Lai-yu WANG, Xin XI, Dong-qing WU, Xiong-yu LIU, Wei JI, Rui-li LIU.
Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity[J]. Journal of Electrochemistry,
2020
,
26(3): 347-358.
DOI: 10.13208/j.electrochem.190428
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss3/5
References
[1]
Diaz-Diestra D, Thapa B, Beltran-Huarac J, et al. L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosensors & Bioelectronics, 2017,87:693-700.
URL
pmid: 27631684
[2] Guan L H( 关利浩), Wang C( 王超), Zhang W( 张望), et al. A facile strategy for two-step fabrication of gold nanoelectrode for in vivo dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2019,25(2):244-251.
[3]
Taylor I M, Robbins E M, Catt K A, et al. Enhanced dopa-mine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes[J]. Biosensors and Bioelectronics, 2017,89:400-410.
doi: 10.1016/j.bios.2016.05.084
URL
pmid: 27268013
[4] Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕), et al. Synjournal of keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2018,24(5):555-562.
[5]
Huang S, Song S S, Yue H Y, et al. ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid[J]. Sensors and Actuators B: Chemical, 2018,277:381-387.
doi: 10.1016/j.snb.2018.09.040
URL
[6] Chen P Y, Vittal R, Nien P C, et al. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion[J]. Biosensors and Bio-electronics, 2009,24(12):3504-3509.
[7]
Gao G, Zhang Z K, Wang K, et al. One-pot synjournal of dendritic Pt3Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection[J]. Nanoscale, 2017,9(31):10998-11003.
doi: 10.1039/c7nr03760k
URL
pmid: 28752884
[8]
Chen J L, Yan X P, Meng K, et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine[J]. Analytical Chemistry, 2011,83(22):8787-8793.
doi: 10.1021/ac2023537
URL
[9]
Qu K G, Wang J S, Ren J S, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine[J]. Chemistry - A European Journal, 2013,19(22):7243-7249.
doi: 10.1002/chem.v19.22
URL
[10]
Cheuk M Y, Lo Y C, Poon W T. Determination of urine catecholamines and metanephrines by reversed-phase liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatograph, 2017,35(10):1042-1047.
doi: 10.3724/SP.J.1123.2017.06011
URL
[11] Tang L J, Li S, Han F, et al. SERS-active Au@Ag nano-rod dimers for ultrasensitive dopamine detection[J]. Bio-sensors and Bioelectronics, 2015,71:7-12.
[12]
Zan X L, Bai H W, Wang C X, et al. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells[J]. Chemistry - A European Journal, 2016,22(15):5204-5210.
doi: 10.1002/chem.201504454
URL
[13]
Das A K, Kuchi R, Van P C, et al. Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine[J]. RSC Advances, 2018,8(54):31037-31047.
doi: 10.1039/C8RA05885G
URL
[14] Yang Y R, Gao W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chemical Society Re-views, 2019,48(6):1465-1491.
[15]
Cai W H, Lai T, Du H J, et al. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor[J]. Sensors and Actuators B: Chemical, 2014,193:492-500.
doi: 10.1016/j.snb.2013.12.004
URL
[16]
Hsu M S, Chen Y L, Lee C Y, et al. Gold nanostructures on flexible substrates as electrochemical dopamine sensors[J]. ACS Applied Materials & Interfaces, 2012,4(10):5570-5575.
doi: 10.1021/am301452b
URL
pmid: 23020235
[17]
Liu J, He Z M, Xue J W, et al. A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing[J]. Journal of Materials Chemistry B, 2014,2(17):2478-2482.
doi: 10.1039/c3tb21355b
URL
[18]
Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011,10(6):424-428.
doi: 10.1038/nmat3001
URL
pmid: 21478883
[19]
Fang Y, Gu D, Zou Y, et al. a low-concentration hydrothermal synjournal of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie International Edition, 2010,49(43):7987-7991.
doi: 10.1002/anie.201002849
URL
pmid: 20839199
[20]
Sajid M, Nazal M K, Mansha M, et al. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J]. TrAC Trends in Analytical Chemistry, 2016,76:15-29.
doi: 10.1016/j.trac.2015.09.006
URL
[21]
Ndamanisha J C, Guo L P. Ordered mesoporous carbon for electrochemical sensing: A review[J]. Analytica Chimica Acta, 2012,747:19-28.
doi: 10.1016/j.aca.2012.08.032
URL
pmid: 22986131
[22]
Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials, 2005,17(18):4577-4593.
doi: 10.1021/cm0485658
URL
[23]
Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications, 2008,10(6):859-863.
doi: 10.1016/j.elecom.2008.03.008
URL
[24]
Yan X, Bo X J, Guo L P. Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode[J]. Sensors and Actuators B: Chemical, 2011,155(2):837-842.
doi: 10.1016/j.snb.2011.01.058
URL
[25]
Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical pro-perties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications, 2007,9(2):233-238.
doi: 10.1016/j.elecom.2006.08.050
URL
[26]
Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors[J]. Biosensors and Bioelectronics, 2008,24(3):442-447.
doi: 10.1016/j.bios.2008.04.025
URL
pmid: 18541421
[27] Ya Y, Wang T S, Xie L P, et al. Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim[J]. Analytical Methods, 2015,7(4):1493-1498.
[28] Zhu G Y, He Z, Chen J, et al. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode[J]. Nano-scale, 2014,6(2):1079-1085.
[29]
Chae S J, Günes F, Kim K K, et al. Synjournal of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation[J]. Advanced Materials, 2009,21(22):2328-2333.
doi: 10.1002/adma.v21:22
URL
[30] Liu R L, Wan L, Liu S Q, et al. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors[J]. Advanced Functional Materials, 2015,25(4):526-533.
[31] Xi X, Wu D Q, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores[J]. ACS Nano, 2018,12(6):5436-5444.
[32]
Fang Y, Lv Y Y, Che R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synjournal and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013,135(4):1524-1530.
URL
pmid: 23282081
[33] Bai Y, Wang W Q, Wang R R, et al. Controllable synjournal of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(23):12530-12538.
[34] Dong X C, Ma Y W, Zhu G Y, et al. Synjournal of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing[J]. Journal of Materials Chemistry, 2012,22(33):17044-17048.
[35] Yu M, Chen J P, Liu J H, et al. Mesoporous NiCO2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation[J]. Electro-chimica Acta, 2015,151:99-108.
[36] He P, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angew-andte Chemie International Edition, 2017,56(14):3897-3900.
[37]
Wang X L, Li Q, Pan H Y, et al. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction[J]. Nanoscale, 2015,7(47):20290-20298.
doi: 10.1039/c5nr05864c
URL
pmid: 26579622
[38] Shen Y, Sheng Q L, Zheng J B. A high-performance electrochemical dopamine sensor based on a platinum-nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite[J]. Analytical Met-hods, 2017,9(31):4566-4573.
[39] Fan H Q, Quan L X, Yuan M Q, et al. Thin Co3O4 nano-sheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2016,188:222-229.
[40] Walcarius A. Recent trends on electrochemical sensors based on ordered mesoporous carbon[J]. Sensors, 2017,17(8):1863.
[41] Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B: Chemical, 2016,227:488-496.
[42] Liu X Y, Xi X, Chen C L, et al. Ordered mesoporous carbon-covered carbonized silk fabrics for flexible electrochemical dopamine detection[J]. Journal of Materials Che-mistry B, 2019,7(13):2145-2150.
[43]
Jothi L, Neogi S, Jaganathan S K, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons[J]. Biosensors and Bioelectronics, 2018,105, 236-242.
doi: 10.1016/j.bios.2018.01.040
URL
pmid: 29412948
[44] Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications, 2009,11(4):889-892.
[45] Numan A, Shahid M M, Omar F S, et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051.
[46]
Thanh T D, Balamurugan J, Lee S H, et al. Effective seed-assisted synjournal of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine[J]. Biosensors and Bioelectronics, 2016,81:259-267.
doi: 10.1016/j.bios.2016.02.070
URL
pmid: 26967913
[47]
Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016,529(7587):509-514.
URL
pmid: 26819044
[48] Li S J, He J Z, Zhang M J, et al. Electrochemical detection of dopamine using water-soluble sulfonated graphene[J]. Electrochimica Acta, 2013,102:58-65.
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons