Corresponding Author

Dong-fang NIU(dfniu@ecust.edu.cn);
Xin-sheng ZHANG(xszhang@ecust.edu.cn)


The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER and the related reaction mechanisms are mainly reviewed. Based on the above strategy, the challenges and prospects for the future development of CO2ER catalysts for industrial applications are proposed.

Graphical Abstract


carbon dioxide, electrochemical reduction, electrocatalysis, enhancing effect, nanosized metals

Publication Date


Online Available Date


Revised Date


Received Date



[1] Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010,463(7282):747-756.
URL pmid: 20148028

[2] IPCC. Special report on global warming of 1. 5oC[M]. UK: Cambridge University Press, 2018.

[3] Gong Z J, Li Y R, Wu H L. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst[J]. Applied Catalysis B - Environmental, 2020,265:118524-118536.
doi: 10.1016/j.apcatb.2019.118524 URL

[4] Li P Y, Liu L, An W J, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Applied Catalysis B - Environmental, 2020,266:118618-118626.

[5] Duan X C, Xu J T, Wei Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017,29(41):170-178.

[6] Jiang Y, Chu N, Qian D K. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide[J]. Bioresource Technology, 2020,295:122266-122274.
URL pmid: 31669871

[7] Eric E B, Clifford P K, Aaron S, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009,38(1):89-99.
doi: 10.1039/b804323j URL pmid: 19088968

[8] Maria J. Electrochemical carbon dioxide reduction-fundamental and applied topics[J]. Journal of the University of Chemical Technology and Metallurgy, 2007,42:333-344.

[9] Zhang X R (张旭锐), Shao X L (邵晓琳), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425.

[10] Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochimica Acta, 1994,39:1833-1839.

[11] Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles (Pd-NPs): efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017,10(8):1733-1741.
doi: 10.1002/cssc.201601778 URL pmid: 28101986

[12] Hossain M N, Liu Z, Wen J, et al. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Applied Catalysis B - Environmental, 2018,236:483-489.

[13] Natsui K, Iwakawa H, Ikemiya N, et al. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes[J]. Angewandte Chemie International Edition, 2018,57(10):2639-2643.
URL pmid: 29345846

[14] Lei W (雷文), Xiao W P (肖卫平), Wang D L (王得丽). Recent progress in copper-based catalysts for electrochemical CO2 reduction[J]. Journal of Electrochemistry (电化学), 2019,25(4):455-466.

[15] Ye K, Cao A, Shao J Q, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity[J]. Science Bulletin, 2020,9(65):711-719.

[16] Lai Q, Yang N, Yuan G Q. Highly efficient In-Sn alloy catalysts for electrochemical reduction of CO2 to formate[J]. Electrochemistry Communications, 2017,83:24-27.

[17] Zhang T T, Qiu Y L, Yao P F, et al. Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate[J]. ACS Sustainable Chemistry & Engineering, 2019,7(18):15190-15196.

[18] He J F, Johnson N J J, Huang A X, et al. JElectrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2017,11(1):48-57.
doi: 10.1002/cssc.201701825 URL pmid: 29205925

[19] Zhang Q, Tao S H, Du J, et al. A cold plasma-activated in situ AgCo surface alloy for enhancing the electroreduction of CO2 to ethanol[J]. Journal of Materials Chemistry A, 2020,8(17):8410-8420.
doi: 10.1039/D0TA01262A URL

[20] Li Q, Fu J J, Zhu W L, et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. Journal of the American Chemical Society, 2017,139(12):4290-4293.
doi: 10.1021/jacs.7b00261 URL pmid: 28291338

[21] Luc W, Collins C, Wang S W, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017,139(5):1885-1893.
doi: 10.1021/jacs.6b10435 URL pmid: 28094994

[22] Zhang A, He R, Li H P, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angewandte Chemie International Edition, 2018,57(34):10954-10958.
doi: 10.1002/anie.201806043 URL pmid: 29953722

[23] Yuan X, Luo Y T, Zhang B, et al. Decoration of In nano-particles on In2S3 nanosheets enables efficient electrochemical reduction of CO2[J]. Chemical Communications, 2020,56(30):4212-4215.
URL pmid: 32175531

[24] Sheng W C, Kattel S, Yao S Y, et al. Electrochemical reduction of CO2 to synjournal gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017,10(5):1180-1185.

[25] Ma S C, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2016,139(1):47-56.
doi: 10.1021/jacs.6b10740 URL pmid: 27958727

[26] Zhang W Y, Qin Q, Dai L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018,57(30):9475-9479.
URL pmid: 29785780

[27] Gao D F, Zhang Y, Zhou Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017,139(16):5652-5655.
doi: 10.1021/jacs.7b00102 URL pmid: 28391686

[28] Jhong H R, Tornow C E, Kim C, et al. Gold nanoparticles on polymer-wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2[J]. ChemPhysChem, 2017,18(22):3274-3279.
doi: 10.1002/cphc.201700815 URL pmid: 28985010

[29] Varela A S, Ranjbar S N, Steinberg J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015,127(37):10908-10912.

[30] Cao T D, Thomas B, Md G K, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
URL pmid: 29773749

[31] Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. Journal of the American Chemical Society, 2014,136(22):7845-7848.
URL pmid: 24779427

[32] Ma Z Q, Lian C, Niu D F, et al. Enhancing CO2 electroreduction with Au/pyridine/carbon nanotubes hybrid structures[J]. ChemSusChem, 2019,12(8):1724-1731.
doi: 10.1002/cssc.201802940 URL pmid: 30761769

[33] Wang Q C, Lei Y P, Wang D S, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019,12(6):1730-1750.

[34] Rahman D, Emma C L, Nicholas M B, et al. Modulating activity through defect engineering of tin oxides for electrochemical CO2 reduction[J]. Advanced Science, 2019,6(18):1900678-1900687.
doi: 10.1002/advs.201900678 URL pmid: 31559127

[35] Wang Y F, Han P, Lv X M. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582.

[36] Zhang Y F (张月凤), Liu J J (刘建军), WEI Z X (危增曦), et al. Single-layer oxygen deficiency δ-MnO2 for electrochemical CO2 reduction[J]. Journal of Electrochemistry (电化学), 2019,25(4):477-485.

[37] Dong H, Zhang L, Li L L, et al. Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance[J]. Small, 2019,15(17):1900289.

[38] Cui X Q, Pan Z Y, Zhang L J, et al. CO2 reduction: selective etching of nitrogen‐doped carbon by steam for enhanced electrochemical CO2 reduction[J]. Advanced Energy Materials, 2017,7(22):1701456.
doi: 10.1002/aenm.201701456 URL

[39] An X W, Li S S, Yoshida A, et al. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustainable Chemistry & Engineering, 2019,7(10):9360-9368.

[40] Daiyan R, Lovell E C, Amal R, et al. Modulating activity through defect engineering of tin oxides for electrochemical CO2 reduction[J]. Advanced Science, 2019,6(18):1900678.
URL pmid: 31559127

[41] Zhang J B, Yin R G, Shao Q, et al. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2019,58(17):5609-5613.
doi: 10.1002/anie.201900167 URL pmid: 30815992

[42] Gao S, Sun Z T, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017,8:14503.
doi: 10.1038/ncomms14503 URL pmid: 28220847

[43] Zhou Y (周远), Han N (韩娜), Li Y G (李彦光). Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction[J]. Acta Physico - Chimica Sinica (物理化学学报), 2020,36(X):2001041. DOI: 10.3866/PKU.WHXB202001041.

[44] Dong H, Zhang L, Yang P P, et al. Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals[J]. Chemical Engineering Science, 2019,194:29-35.
doi: 10.1016/j.ces.2018.03.029 URL

[45] Huang Q L, Liu H M, An W, et al. Synergy of a mtallic NiCo dimer anchored on a C2N-graphene matrix promotes the electrochemical CO2 reduction reaction[J]. ACS Sustainable Chemistry & Engineering, 2019,7(23):19113-19121.

[46] He Y H, Jiang W J, Zhang Y. Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts[J]. Journal of Materials Chemistry A, 2019,7(31):18428-18433.
doi: 10.1039/C9TA05937G URL

[47] Wang Y, Zhou J, Lv W X, et al. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam[J]. Applied Surface Science, 2015,362(36):394-398.

[48] Yang Y (杨艳), Zhang Y (张云), Hu J S (胡劲松), et al. Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products[J]. Acta Physico - Chimica Sinica (物理化学学报), 2020,36(1):1906085. DOI: 10.3866/PKU.WHXB201906085.

[49] Zhang S, Kang P, Meyer T J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate[J]. Journal of the American Chemical Society, 2014,136(5):1734-1737.
doi: 10.1021/ja4113885 URL pmid: 24417470

[50] Tackett B M, Sheng W C, Chen J G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts[J]. Joule, 2017,1(2):253-263.

[51] Hunt S T, Milina M, Alba-Rubio A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016,352(6288):974-978.
doi: 10.1126/science.aad8471 URL pmid: 27199426

[52] Kim J H, Woo H, Choi J, et al. CO2 Electroreduction on Au/TiC: enhanced activity due to metal-support interaction[J]. ACS Catalysis, 2017,7(3):2101-2106.

[53] Zhang L, Mao F X, Zheng L R, et al. Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction[J]. ACS Catalysis, 2018,8(12):11035-11041.

[54] An X W, Li S S, Yoshida A, et al. Bi-doped SnO nano-sheets supported on Cu foam for electrochemical reduction of CO2 to HCOOH[J]. ACS Applied Materials & Interfaces, 2019,11(45):42114-42122.
doi: 10.1021/acsami.9b13270 URL pmid: 31623434

[55] Maor F, Baruch, James E, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy[J]. ACS Catalysis, 2015,5(5):3148-3156.

[56] Deng P L, Wang H M, Qi R J, et al. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate[J]. ACS Catalysis, 2020,10(1):743-750.

[57] Adarsh K S, Chandrasekaran N, Chakrapani V. In-situ spectroscopic techniques as critical evaluation tools for electrochemical carbon dioxide reduction: a mini review[J]. Frontiers in Chemistry, 2020,8:137.
doi: 10.3389/fchem.2020.00137 URL pmid: 32266204

[58] Firet N J, Blommaert M A, Burdyny T, et al. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction[J]. Journal of Materials Chemistry A, 2019,7(6):2597-2607.

[59] Zhang Y N, Liu L, Shi L, et al. Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides[J]. Electrochimica Acta, 2019,313:561-569.

[60] Chen C Z, Pang Y J, Zhang F H, et al. Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate[J]. Journal of Materials Chemistry A, 2018,6(40):19621-19630.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.