•  
  •  
 

Corresponding Author

Dai-Wen PANG(dwpang@whu.edu.cn)

Abstract

Carbon nanodots (CNDs), as zero-dimensional carbonaceous fluorescent nanomaterials, are valuable add-ons to the current cohorts of fluorescent nanoparticles. The fine control over the size and the surface is the key to gain designated photophysical properties of CNDs as well as empowers CNDs in many applications. Herein, a series of electrochemical strategies to manipulate the size and the surface of CNDs and to identify the surface structures was presented. Accordingly, the understandings on the originals of photoluminescence as well as the pathways of electrochemiluminescence of CNDs were revealed. These studies demonstrated that electrochemical methods were easy to operate, cost-effective and efficient in altering thin layers of the surface on CNDs within a few nanometers. The key findings in the luminescence mechanism provided guidelines for the rational design of CNDs with suitable features, which could promote applications of CNDs in bioimaging, sensing and catalytic conversion.

Graphical Abstract

Keywords

carbon nanodot, electrochemical method, luminescence mechanism, surface structure, electrochemiluminescence

Publication Date

2020-10-28

Online Available Date

2020-08-19

Revised Date

2020-08-02

Received Date

2020-06-30

References

[1] Chandra S, Das P, Bag S, et al. Synjournal, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles[J]. Nanoscale, 2011,3(4):1533-1540.
doi: 10.1039/c0nr00735h URL pmid: 21293809

[2] Sun Y P, Yang S T, Wang X, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, 2009,113(42):18110-18114.

[3] Yang S T, Cao l, Sun Y P, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society, 2009,131(32):11308-11309.
URL pmid: 19722643

[4] Xu X Y, Ray R, Gu YL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004,126(40):12736-12737.
doi: 10.1021/ja040082h URL pmid: 15469243

[5] Liu C, Bao L, Tang B, et al. Fluorescence-converging carbon nanodots—hybridized silica nanosphere[J]. Small, 2016,12(34):4702-4706.
doi: 10.1002/smll.201503958 URL pmid: 26972488

[6] Shi L H, Zhao B, Li X F, et al. Green-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing[J]. Analytical Methods, 2017,9(14):2197-2204.
doi: 10.1039/C7AY00163K URL

[7] Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie International Edition, 2015,54(18):5360-5363.
URL pmid: 25832292

[8] Liu C, Tang B, Zhang S, et al. Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence[J]. The Journal of Physical Chemistry C, 2018,122(6):3662-3668.

[9] Kong B, Zhu A W, Ding CQ, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012,24:5844-5848.
doi: 10.1002/adma.201202599 URL pmid: 22933395

[10] Shi W, Li X H, Ma H M, et al. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[J]. Angewandte Chemie International Edition, 2012,51(26):6432-6435.
URL pmid: 22644672

[11] Yuan F L, Yuan T, Sui L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Natural Communications, 2018,9:2249.

[12] Cao L, Sahu S, Anilkumar P, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J]. Journal of the American Chemical Society, 2011,133(13):4754-4757.
doi: 10.1021/ja200804h URL pmid: 21401091

[13] Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010,49(26):4430-4434.
doi: 10.1002/anie.200906154 URL pmid: 20461744

[14] Shinde B D, Pillai V K. Electrochemical resolution of multiple redox events for graphene quantum dots[J]. Angewandte Chemie International Edition, 2013,52(9):2482-2485.
URL pmid: 23362189

[15] Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012,22(14):2971-2979.

[16] Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011,23(6):776-780.
URL pmid: 21287641

[17] Li L L, Wu G H, Yang G H, et al. Focusing on luminescent graphene quantum dots: Current status and future perspectives[J]. Nanoscale, 2013,5(10):4015-4039.
URL pmid: 23579482

[18] Zhu S J, Zhang J H, Tang S J, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications[J]. Advanced Functional Materials, 2012,22:4732-4740.

[19] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012,12(2):844-849.
doi: 10.1021/nl2038979 URL pmid: 22216895

[20] Feng, T L, Zhu S J, Zeng Q S, et al. Supramolecular cross-link-regulated emission and related applications in polymer carbon dots[J]. ACS Applied Materials & Interfaces, 2018,10(15):12262-12277.
URL pmid: 29164859

[21] Ding C Q, Zhu A W, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014,47(1):20-30.
doi: 10.1021/ar400023s URL pmid: 23911118

[22] Hu C(胡超), Mu Y(穆野), Li M Y(李明宇), et al. Recent advances in the synjournal and applications of carbon dots[J]. Acta Physico - Chimica Sinica (物理化学学报), 2019,35(6):572-590.

[23] Hola K, Zhang Y, Wang Y, et al. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014,9(5):590-603.

[24] Fernando K A S, Sahu S, Liu Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Applied Materials & Interfaces, 2015,7(16):8363-8376.
URL pmid: 25845394

[25] Zheng X T, Ananthanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small, 2015,11(14):1620-1636.
URL pmid: 25521301

[26] Liang W X, Bunker C E, Sun Y P. Carbon dots: Zero-dimensional carbon allotrope with unique photoinduced redox characteristics[J]. ACS Omega, 2020,5(2):965-971.
URL pmid: 31984251

[27] Long Y M, Zhao Q L, Zhang Z L, et al. Electrochemical methods—important means for fabrication of fluorescent nanoparticles[J]. Analyst, 2012,137(4):805-815.
URL pmid: 22189754

[28] Qi B P, Bao L, Zhang Z L, et al. Electrochemical methods to study photoluminescent carbon nanodots: Preparation, photoluminescence mechanism and sensing[J]. ACS Applied Materials & Interfaces, 2016,8(42):28372-28382.
doi: 10.1021/acsami.5b11551 URL pmid: 26906145

[29] Qi B P(齐宝平), Bao L(包蕾), Long Y M(龙艳敏), et al. Study on the fluorescent carbon nanodots with electrochemical methods[J]. Journal of Electrochemistry (电化学), 2011,17(3):271-276.

[30] Zhao Q L, Zhang Z L, Pang D W, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by ele-ctrooxidation of graphite[J]. Chemical Communications, 2008,41:5116-5118.

[31] Lu J, Yang J X, Wang J Z, et al. One-pot synjournal of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009,3(8):2367-2375.
URL pmid: 19702326

[32] Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007,129(4):744-745.
doi: 10.1021/ja0669070 URL pmid: 17243794

[33] Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism[J]. Advanced Materials, 2011,23(48):5801-5806.
doi: 10.1002/adma.201102866 URL pmid: 22144369

[34] Long Y M, Zhou C H, Zhang Z L, et al. Shifting and non-shifting fluorescence emitted by carbon nanodots[J]. Journal of Materials Chemistry, 2012,22(13):5917-5920.

[35] Qi B P, Hu H, Bao L, et al. An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots[J]. Nanoscale, 2015,7(14):5969-5973.

[36] Chen Y, Cao Y, Ma C, et al. Carbon-based dots for electrochemiluminescence sensing[J]. Materials Chemistry Frontiers, 2020,4(2):369-385.

[37] Long Y M, Bao L, Zhao J Y, et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+[J]. Analytical Chemistry, 2014,86(15):7224-7228.

[38] Long Y M, Bao L, Peng Y, et al. Self-co-reactant and ion-annihilation electrogenerated chemiluminescence of carbon nanodots[J]. Carbon, 2018,129:168-174.

[39] Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning[J]. Advanced Materials, 2015,27(10):1663-1667.
URL pmid: 25589141

[40] Liu C, Bao L, Yang M L, et al. Surface sensitive photoluminescence of carbon nanodots: Coupling between the carbonyl group and π-electron system[J]. The Journal of Physical Chemistry Letters, 2019,10(13):3621-3629.
URL pmid: 31199162

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.