Corresponding Author

Zhou-Guang Lu(luzg@sustech.edu.cn);
Wei-Wei Huang(huangweiwei@ysu.edu.cn)


With the increasing requirements for high energy density, long lifetime, high safety, environmentally friendly fabrication, and sustainable development of large energy storage devices, the society calls for new electrode materials in rechargeable batteries beyond traditional inorganic materials which are limited by specific capacity. Organic electrode materials have been widely used in rechargeable batteries due to their advantages of large theoretical capacity, designable structures and environmentally friendly fabrications. In this review, the radical intermediates of organic electrode materials produced in the charging-discharging process (redox reaction) and their types are systematically reviewed. The stability of radical intermediates controlled by changing the structure of materials, and thereby, the optimization in the electrochemical performance of organic electrode materials are described. The reasons for the optimization of electrochemical performance are analyzed in depth, and the mechanism is discussed. This review provides guidance for improving the electrochemical performance of secondary batteries with organic materials as electrodes in the future.

Graphical Abstract


rechargeable battery, organic electrode materials, transition state, radical intermediates, tunable

Publication Date


Online Available Date


Revised Date


Received Date



[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
doi: 10.1038/451652a URL pmid: 18256660

[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359-367.
doi: 10.1038/35104644 URL pmid: 11713543

[3] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chem. Rev., 2018,118(23):11433-11456.
doi: 10.1021/acs.chemrev.8b00422 URL pmid: 30500179

[4] Yang Y S(杨裕生). A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem. (电化学), 2020,26(4):443-463.

[5] Chen J H(陈嘉卉), Zhong X B(钟晓斌), He C(何超), Wang X X(王晓晓), Xu Q C(许清池), Li J F(李剑锋). Synjournal and raman study of hollow core-shell Ni1.2Co0.8P@N-C as an anode material for sodium-ion batteries[J]. J. Electrochem (电化学), 2020,26(3):328-337.

[6] Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), Wang L B(王刘彬), Xiang X D(向兴德), Chen J(陈军). Research and application of key materials for sodium-ion batteries[J]. J. Electrochem. (电化学), 2016,22(5):437-452.

[7] Wang F F(王凡凡), Liu X B(刘晓斌), Chen L(陈龙), Chen C C(陈程成), Liu Y C(刘永畅), Fan L Z(范丽珍). Recent progress in key materials for room-temperature sodium-ion batteries[J]. J. Electrochem. (电化学), 2019,25(1):55-76.

[8] Yuan H T(袁华堂), Jiao L F(焦丽芳), Cao J S(曹建胜), Liu X S(刘秀生), Zhao M(赵明), Wang Y M(王永梅). Preparation and electrochemical magnesium insertion behaviors of MgV2O6[J]. J. Electrochem. (电化学), 2004,10(4):460-463.

[9] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010,22(3):587-603.
doi: 10.1021/cm901452z URL

[10] Liu Q, Su X, Lei D, Qin Y, Wen J G, Guo F M, Wu Y M A, Rong Y C, Xiao X H, Aguesse F, Bareno J, Ren Y, Lu W Q, Li Y X. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nat. Energy, 2018,3(11):936-943.
doi: 10.1038/s41560-018-0180-6 URL

[11] Zhou Y N, Wang P F, Niu Y B, Li Q H, Yu X Q, Yin Y X, Xu S L, Guo Y G. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019,55:143-150.
doi: 10.1016/j.nanoen.2018.10.072 URL

[12] Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):1805061.
doi: 10.1002/smll.v15.15 URL

[13] Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y L, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chem. Rev., 2020,120(14):6490-6557.
doi: 10.1021/acs.chemrev.9b00482 URL pmid: 32207919

[14] Huang J H(黄健航), Dong X L(董晓丽), Guo Z W(郭昭薇), Ma Y Y(马元元), Wang Y Y(王艳荣), Wang Y G(王永刚). Electrochemical energy storage and conversion based on organic electrodes[J]. J. Electrochem. (电化学), 2020,26(4):486-494.

[15] Wang L B, Ni Y X, Hou X S, Chen L, Li F J, Chen J. A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage[J]. Angew. Chem. Int. Ed., 2020,59(49):22126-22131.
doi: 10.1002/anie.v59.49 URL

[16] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nat. Rev. Chem., 2020,4(3):127-142.
doi: 10.1038/s41570-020-0160-9 URL

[17] Wu Y W, Zeng R H, Nan J M, Shu D, Qiu Y C, Chou S L. Quinone electrode materials for rechargeable lithium/sodium ion batteries[J]. Adv. Energy Mater., 2017,7(24):1700278.
doi: 10.1002/aenm.v7.24 URL

[18] Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries[J]. Angew. Chem Int. Ed., 2020,57(30):9443-9446.
doi: 10.1002/anie.201805540 URL

[19] Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2020,60(6):3205-3211.
doi: 10.1002/anie.v60.6 URL

[20] Liang Y L, Tao Z L, Chen J. Organic electrode materials for rechargeable lithium batteries[J]. Adv. Energy Mater., 2012,2(7):742-769.
doi: 10.1002/aenm.201100795 URL

[21] Zhu L M, Lei A W, Cao Y L, Ai X P, Yang H X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode[J]. Chem. Commun., 2013,49(6):567-569.
doi: 10.1039/C2CC36622C URL

[22] Luo Y W, Zheng F P, Liu L J, Lei K X, Hou X S, Xu G, Meng H, Shi J F, Li F J. A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions[J]. ChemSusChem, 2020,13(9):2239-2244.
doi: 10.1002/cssc.201903083 URL pmid: 32022410

[23] Wu Z, Xie J, Xu Z C J, Zhang S Q, Zhang Q C. Recent progress in metal-organic polymers as promising electrodes for lithium/sodium rechargeable batteries[J]. J.Mater. Chem. A, 2019,7(9):4259-4290.

[24] Wang J L, Yang J, Wan C R, Du K, Xie, J Y, Xu N X. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003,13(6):487-492.
doi: 10.1002/adfm.200304284 URL

[25] Koshika K, Sano N, Oyaizu K, Nishide H. An aqueous, electrolyte-type, rechargeable device utilizing a hydrophi-lic radical polymer-cathode[J]. Macromol. Chem. Phys., 2009,210(22):1989-1995.
doi: 10.1002/macp.200900257 URL

[26] Feng J K, Cao Y L, Ai X P, Yang H X. Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries[J]. J. Power Sources, 2008,177(1):199-204.
doi: 10.1016/j.jpowsour.2007.10.086 URL

[27] Koshika K, Sano N, Oyaizu K, Nishide H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte[J]. Chem. Commun., 2009,45(7):836-838.

[28] Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Adv. Energy Mater., 2015,5(11):1402034.
doi: 10.1002/aenm.201402034 URL

[29] Huang W W, Zhu Z Q, Wang L J, Wang S W, Li H, Tao Z L, Shi J F, Guan L H, Chen J. Quasi-solid-state rechargeable lithium-ion batteries with a calix

[4]quinone cathode and gel polymer electrolyte[J]. Angew. Chem. Int. Ed., 2013,52(35):9162-9166.
doi: 10.1002/anie.201302586 URL

[30] Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Calix

[6]quinone as high-performance cathode for lithium-ion battery[J]. Sci. China Mater., 2020,63(3):339-346.
doi: 10.1007/s40843-019-1185-2 URL

[31] Huang W W, Zheng S B, Zhang X Q, Zhou W J, Xiong W X, Chen J. Synjournal and application of calix

[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries[J]. Energy Storage Mater., 2020,26:465-471.

[32] Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Pillar

[5]quinone-carbon nanocomposites as high-capacity cathodes for sodium-ion batteries[J]. Chem.Mater., 2019,31(19):8069-8075.

[33] Zhang M, Zhang Y, Huang W W, Zhang Q C. Recent progress in calix[n]quinone (n=4, 6) and pillar

[5]quinone electrodes for secondary rechargeable batteries[J]. Batteries & Supercaps, 2020,3(6):476-487.

[34] Gomberg M. An instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900,22(11):757-771.
doi: 10.1021/ja02049a006 URL

[35] Blasco T, Camblor M A, Corma A, Perezpariente J. The state of Ti in titanoaluminosilicates isomorphous with zeolite β[J]. J. Am. Chem. Soc., 1993,115(25):11806-11813.
doi: 10.1021/ja00078a020 URL

[36] Bachmann W E, Wiselogle F Y. The relative stability of pentaarylethanes. III.1 The reversible dissociation of pentaarylethanes*[J]. J. Org. Chem., 1936,1(4):354-382.
doi: 10.1021/jo01233a006 URL

[37] Griller D, Ingold K U. Persistent carbon-centered radicals[J]. Acc. Chem. Res., 1976,9(1):13-19.
doi: 10.1021/ar50097a003 URL

[38] Kerk G J M V D, Noltes J G, Luijten J G A. Investigations on organo-tin compounds. VII* The addition of organo-tin hydrides to olefinic double bonds[J]. J. Appl. Chem., 1957,7(7):356-365.
doi: 10.1002/jctb.v7:7.n URL

[39] Yan M, Lo J C, Edwards J T, Baran P S. Radicals: reactive intermediates with translational potential[J]. J. Am. Chem. Soc., 2016,138(39):12692-12714.
URL pmid: 27631602

[40] Xu Z M(许振民), Bian Z F(卞振锋). Photocatalytic methane conversion[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2020,36(3):1907013.

[41] Wang Q B(王庆兵), Guo Z W(郭政伟), Chen G(陈弓), He G(何刚). DPPF-mediated C-H arylation of arenes with aryl iodides for synjournal of biaryl linkages[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2019,35(9):1021-1026.

[42] Faust T B, D’Alessandro D M. Radicals in metal-organic frameworks[J]. RSC Adv., 2014,4(34):17498-17512.
doi: 10.1039/C4RA00958D URL

[43] Potts S V, Barbour L J, Haynes D A, Rawson J M, Lloyd G O. Inclusion of thiazyl radicals in porous crystalline materials[J]. J. Am. Chem. Soc., 2011,133(33):12948-12951
doi: 10.1021/ja204548d URL pmid: 21776993

[44] Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angew. Chem. Int. Ed., 2015,54(23):6814-6818.
doi: 10.1002/anie.201501706 URL

[45] Zhao Q, Lu Y, Chen J. Advanced organic electrode materials for rechargeable sodium-ion batteries[J]. Adv. Energy Mater, 2017,7(8):1601792.
doi: 10.1002/aenm.201601792 URL

[46] Sun D L, Rosokha S V, Kochi J K. Donor-acceptor (electronic) coupling in the precursor complex to organic electron transfer: intermolecular and intramolecular self-exchange between phenothiazine redox centers[J]. J. Am. Chem. Soc., 2004,126(5):1388-1401.
URL pmid: 14759197

[47] Ji L, Friedrich A, Krummenacher I, Eichhorn A, Braunschweig H, Moos M, Hahn S, Geyer F L, Tverskoy O, Han J, Lambert C, Dreuw A, Marder T B, Bunz UHF. Preparation, properties, and structures of the radical anions and dianions of azapentacenes[J]. J. Am. Chem. Soc., 2017,139(44):15968-15976.
URL pmid: 28988473

[48] Okino K, Hira S, Inoue Y, Sakamaki D, Seki S. The divergent dimerization behavior of N-substituted dicyanomet-hyl radicals: dynamically stabilized versus stable radicals[J]. Angew. Chem. Int. Ed., 2017,56(52):16597-16601.
doi: 10.1002/anie.201710354 URL

[49] Kolek M, Otteny F, Schmidt P, Muck-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions[J]. Energy Environ. Sci., 2017,10(11):2334-2341.
doi: 10.1039/C7EE01473B URL

[50] Wu S F, Wang W X, Li M C, Cao L J, Lyu F C, Yang M Y, Wang Z Y, Shi Y, Nan B, Yu S C, Sun Z F, Liu Y, Lu Z G. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate[J]. Nat. Commun., 2016,7:13318.
doi: 10.1038/ncomms13318 URL pmid: 27819293

[51] Sun T, Xie J, Guo W, Li D S, Zhang Q C. Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries[J]. Adv. Energy Mater., 2020,10(19):1904199.
doi: 10.1002/aenm.v10.19 URL

[52] Guo C Y, Zhang K, Zhao Q, Peia L K, Chen J. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J]. Chem. Commun., 2015,51(50):10244-10247.
doi: 10.1039/C5CC02251G URL

[53] Wang C L, Fang Y G, Xu Y, Liang L Y, Zhou M, Zhao H P, Lei Y. Manipulation of disodium rhodizonate: factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability[J]. Adv. Funct. Mater., 2016,26(11):1777-1786.
doi: 10.1002/adfm.v26.11 URL

[54] Peng C X, Ning G H, Su J, Zhong G M, Tang W, Tian B B, Su C L, Yu D Y, Zu L H, Yang J H, Ng M F, Hu Y S, Yang Y, Armand M, Loh K P. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes[J]. Nat. Energy, 2017,2:17074.
doi: 10.1038/nenergy.2017.74 URL

[55] Lee M, Hong J, Seo D H, Nam D H, Nam K T, Kang K, Park C B. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound[J]. Angew. Chem. Int. Ed., 2013,52(32):8322-8328.
doi: 10.1002/anie.v52.32 URL

[56] Lee M, Hong J, Kim H, Lim H D, Cho S B, Kang K, Park C B. Organic nanohybrids for fast and sustainable energy storage[J]. Adv. Mater., 2014,26(16):2558-2565.
doi: 10.1002/adma.201305005 URL pmid: 24488928


[57]Lee S, Hong J, Jung S K, Ku K, Kwon G, Seong W M, Kim H, Yoon G, Kang I, Hong K, Jang H W, Kang K. Charge-transfer complexes for high-power organic rechar-geable batteries[J]. Energy Storage Mater., 2019,20, 462-469.

[58]Ma T, Liu L J, Wang J Q, Lu Y, Chen J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries[J]. Angew. Chem. Int. Ed., 2020,59(28), 11533-11539.
doi: 10.1002/anie.v59.28 URL

[59]Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries[J]. J. Am. Chem. Soc., 2019,141(24):9623-9628.
doi: 10.1021/jacs.9b03467 URL pmid: 31121094

[60]Li F, Gore D N, Wang S Y, Lutkenhaus J L. Unusual internal electron transfer in conjugated radical polymers[J]. Angew. Chem. Int. Ed., 2017,56(33):9856-9859.
doi: 10.1002/anie.v56.33 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.