Corresponding Author

Rui Huang(rhuang@xmu.edu.cn);
Shi-Gang Sun(sgsun@xmu.edu.cn)


As a new energy conversion device, direct ethanol fuel cells (DEFCs) are widely concerned because of their remarkable advantages such as high theoretical energy density and wide fuel sources. However, the rapid development of DEFCs has been severely impeded due to the sluggish kinetic process and toxic intermediates especially in their anodic reactions. Palladium (Pd)-based materials are considered to be excellent anode catalysts for DEFCs, especially under alkaline conditions. And further improving their performance is an important direction to promote the development of DEFCs. Surface structure and composition are the key factors affecting the performance of catalysts which can be improved by reasonable regulation. It is reported that high-index faceted structures and element doping are beneficial to improve the performance of catalyst. In this work, the advantages of these two strategies were used comprehensively to prepare Pd-based catalysts with high efficiency. Palladium cobalt (PdCo) and Ir-doped PdCo tetrahedron alloy nanocatalysts (denoted by PdCo-TH and PdCoIr-TH, respectively) have been successfully prepared by one-step hydrothermal method. The characterization results of TEM, ICP, XPS and CV show that the PdCo-TH binary and PdCoIr-TH ternary alloys were formed, while Ir element was mainly distributed on the PdCoIr-TH surface. Compared with the commercial Pd/C, the PdCo-TH/C and PdCoIr-TH/C exhibited the enhanced catalytic properties toward ethanol oxidation reaction in alkaline solutions. Particularly, the Pd9Co1Ir0.1-TH/C catalyst showed the best activity and stability toward EOR, especially at low potentials (< -0.25 V). And Ir sites not only resisted CO poison effectively, but also shifted the initial oxidation potential of ethanol negatively. Meanwhile, the selectivity of C1 products during the electrocatalytic oxidation of ethanol has been greatly improved with the increase of Ir content. The enhanced reactivities of PdCo-TH/C and PdCoIr-TH/C could be attributed to: (a) The coexistence of Co sites and Ir sites on the surfaces can generate OHad species which can promote the oxidation of intermediate adsorbed species on Pd sites and (b) the negative shift in electron binding energy of Pd due to the addition of Ir may make reaction intermediates desorb more difficultly, which might make the reactivity of PdCoIr-TH/C differ from that of PdCo-TH/C. This research work has demostrated a strategic approach for future development in high efficiency catalysts used for DEFCs.

Graphical Abstract


tetrahedron alloy nanocatalysts, PdCoIr, PdCo, ethanol oxidation reaction, electrocatalysis

Publication Date


Online Available Date


Revised Date


Received Date



[1] Wang Y, Zou S Z, Cai W B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials[J]. Catalysts, 2015,5(3):1507-1534.
doi: 10.3390/catal5031507 URL

[2] Li Z J, Chen Y F, Fu G T, Chen Y, Sun D M, Lee J M, Tang Y W. Porous PdRh nanobowls: facile synjournal and activity for alkaline ethanol oxidation[J]. Nanoscale, 2019,11(6):2974-2980.
URL pmid: 30693934

[3] Sheng J L, Kang J H, Hu Z X, Yu Y, Fu X Z, Sun R, Wong C P. Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(32):15789-15796.
doi: 10.1039/C8TA04181D URL

[4] Dutta A, Datta J. Energy efficient role of Ni/NiO in PdNi nano catalyst used in alkaline DEFC[J]. J. Mater. Chem. A, 2014,2:3237-3250.
doi: 10.1039/c3ta12708g URL

[5] Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanc-ed infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
doi: 10.1021/cs401198t URL

[6] Du W X, Mackenzie K E, Milano D F, Deskins N A, Su D, Teng X W. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal., 2012,2(2):287-297.
doi: 10.1021/cs2005955 URL

[7] Pereira A O, Miranda C R. Atomic scale insights into ethanol oxidation on Pt, Pd and Au metallic nanofilms: A DFT with van der Waals interactions[J]. Appl. Surf. Sci., 2014,288:564-571.
doi: 10.1016/j.apsusc.2013.10.074 URL

[8] Fanga X, Wanga L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. J. Power Sources, 2010,195:1375-1378.
doi: 10.1016/j.jpowsour.2009.09.025 URL

[9] Guo J C, Huang R, Li Y, Yu Z Y, Wang L Y, Huang L, Xu B B, Ye J Y, Sun S G. Surface structure effects of high-index faceted Pd nanocrystals decorated by Au submonolayer in enhancing the catalytic activity for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2019,123(38):23554-23562.
doi: 10.1021/acs.jpcc.9b07061 URL

[10] Zhou Z Y, Wang Q A, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55:7995-7999.
doi: 10.1016/j.electacta.2010.02.071 URL

[11] Huang W J, Ma X Y, Wang H, Feng R F, Zhou J G, Duchesne P N, Zhang P, Chen F J, Han N, Zhao F P, Zhou J H, Cai W B, Li Y G. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Adv. Mater., 2017,29(37):1703057.
doi: 10.1002/adma.v29.37 URL

[12] Chen Y M(陈玉梅), Liang Z X(梁志修), Chen S L(陈胜利). Synjournal and Electrocatalytic Properties of Ni-Pd/C Catalysts with Pd-enriched Surface[J]. J. Electrochem. (电化学), 2009,15(4):371-375.

[13] Lin H H, Muzzio M, Wei K C, Zhang P, Li J R, Li N, Yin Z Y, Su D, Sun S H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: enhanced activity and C1 pathway selectivity[J]. ACS Appl. Energy Mater., 2019,2:8701-8706.
doi: 10.1021/acsaem.9b01674 URL

[14] Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2018,122(39):22448-22459.
doi: 10.1021/acs.jpcc.8b05812 URL

[15] Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett., 2017,688:92-97.
doi: 10.1016/j.cplett.2017.09.045 URL

[16] Chang Q W, Kattel S, Li X, Liang Z X, Tackett B M, Denny S R, Zhang P, Su D, Chen J G G, Chen Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catal., 2019,9(9):7618-7625.
doi: 10.1021/acscatal.9b02039 URL

[17] Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)PtIr(shell) electrocatalyst[J]. J. the Am. Chem. Soc., 2019,141(24):9629-9636.
doi: 10.1021/jacs.9b03474 URL

[18] Lai S C S, Kleijn S E F, Öztürk F T Z, Vellinga V C V, Koning J, Rodriguez P, Koper MTM. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction[J]. Catal. Today, 2010,154(1-2):92-104.
doi: 10.1016/j.cattod.2010.01.060 URL

[19] Zanata C R, Martins C A, Teixeira-Neto É, Giz M J, Camara G A. Two-step synjournal of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation[J]. J. Catal., 2019,377:358-366.
doi: 10.1016/j.jcat.2019.07.042 URL

[20] Li S W, Yang H L, Zou H, Yang M, Liu X D, Jin J, Ma J T. Palladium nanoparticles anchored on NCNTs@NGS with a three-dimensional sandwich-stacked framework as an advanced electrocatalyst for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(30):14717-14724.
doi: 10.1039/C8TA04471F URL

[21] Xu H, Song P P, Zhang Y P, Du Y K. 3D-2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation[J]. Nanoscale, 2018. 10(26):12605-12611.
URL pmid: 29938253

[22] Guo F, Li Y J, Fan B A, Liu Y, Lu L L, Lei Y. Carbon- and binder-free core-shell nanowire arrays for efficient ethanol electro-oxidation in alkaline medium[J]. ACS Appl. Mater. Inter., 2018,10(5):4705-4714.
doi: 10.1021/acsami.7b16615 URL

[23] Shu Y L, Shi X Q, Ji Y Y, Wen Y, Guo X Y, Ying Y, Wu Y P, Yang H F. Hollow echinus-like PdCuCo alloy for superior efficient Catal. of ethanol[J]. ACS Appl. Mater. Inter., 2018,10(5):4743-4749.
doi: 10.1021/acsami.7b17731 URL

[24] Lv H, Wang H, Lopes A, Xu D D, Liu B. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis[J]. Applied Catal. B - Environ., 2019,249:116-125.
doi: 10.1016/j.apcatb.2019.02.068 URL

[25] Ning L N, Zhu A M, Deng M, Zhang Q G, Liu Q L. Novel H-PdSnNi catalyst with enhanced ethanol electrooxidation performance in alkaline medium[J]. Electrochim. Acta, 2018,259:1145-1153.
doi: 10.1016/j.electacta.2017.10.112 URL

[26] Wei M, Zhang L L, Luo D, Ding L X, Wang S Q, Wang H H. Graphene-assisted synjournal of PdFe-embedded porous carbon nanofibers for efficient ethanol electrooxidation[J]. Electrochim. Acta, 2018,289:311-318.
doi: 10.1016/j.electacta.2018.09.054 URL

[27] Yang T, Wang Y H, Wei W X, Ding X R, He M S, Yu T T, Zhao H, Zhang D E. Synjournal of octahedral Pt-Ni-Ir yolk-shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions[J]. Nanoscale, 2019,111(48):23206-23216.

[28] Yang T, Ma Y X, Huang Q L, Cao G J. Palladium-iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction[J]. Nano Energy, 2016,19:257-268.
doi: 10.1016/j.nanoen.2015.11.002 URL

[29] Yang T, Ma Y Q, Huang Q L, He M S, Cao G J, Sun X, Zhang D G, Wang M Y, Zhao H, Tong Z W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016,8(36):23646-23654.
doi: 10.1021/acsami.6b05726 URL

[30] Yang T, Cao G J, Huang Q L, Ma Y X, Wan S, Zhao H, Li N, Yin F J, Sun X, Zhang D E, Wang M Y. Truncated octahedral platinum-nickel-iridium ternary electro-catalyst for oxygen reduction reaction[J]. J. Power Sources, 2015,291:201-208.
doi: 10.1016/j.jpowsour.2015.05.032 URL

[31] Zhang J W, Chen M S, Li H Q, Li Y J, Ye J Y, Cao Z M, Fang M L, Kuang Q, Zheng J, Xie Z X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells[J]. Nano Energy, 2018,44:127-134.
doi: 10.1016/j.nanoen.2017.11.075 URL

[32] Hwang S J, Yoo S J, Jeon T Y, Lee K S, Lim T H, Sung Y E, Kim S K. Facile synjournal of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction[J]. Chem. Commun., 2010,46(44):8401-8403.
doi: 10.1039/c0cc03125a URL

[33] Shen S Y, Zhao T S, Xu J B. Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media[J]. Electrochim. Acta, 2010,55(28):9179-9184.
doi: 10.1016/j.electacta.2010.09.018 URL

[34] Wang X, Tang Y, Gao Y, Lu T H. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell[J]. J. Power Sources, 2008,175(2):784-788.
doi: 10.1016/j.jpowsour.2007.10.011 URL

[35] Shen S Y, Zhao T S, Xu J B, Li Y S. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells[J]. Energy Envir. Sci., 2011,4(4):1428-1433.
doi: 10.1039/c0ee00579g URL

[36] Kavanagh R, Cao X M, Lin W F, Hardacre C, Hu P. Origin of low CO2 selectivity on platinum in the direct ethanol fuel cell[J]. Angew. Chem. Int. Ed., 2012,51(7):1572-1575.
doi: 10.1002/anie.v51.7 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.