Abstract
As a new energy conversion device, direct ethanol fuel cells (DEFCs) are widely concerned because of their remarkable advantages such as high theoretical energy density and wide fuel sources. However, the rapid development of DEFCs has been severely impeded due to the sluggish kinetic process and toxic intermediates especially in their anodic reactions. Palladium (Pd)-based materials are considered to be excellent anode catalysts for DEFCs, especially under alkaline conditions. And further improving their performance is an important direction to promote the development of DEFCs. Surface structure and composition are the key factors affecting the performance of catalysts which can be improved by reasonable regulation. It is reported that high-index faceted structures and element doping are beneficial to improve the performance of catalyst. In this work, the advantages of these two strategies were used comprehensively to prepare Pd-based catalysts with high efficiency. Palladium cobalt (PdCo) and Ir-doped PdCo tetrahedron alloy nanocatalysts (denoted by PdCo-TH and PdCoIr-TH, respectively) have been successfully prepared by one-step hydrothermal method. The characterization results of TEM, ICP, XPS and CV show that the PdCo-TH binary and PdCoIr-TH ternary alloys were formed, while Ir element was mainly distributed on the PdCoIr-TH surface. Compared with the commercial Pd/C, the PdCo-TH/C and PdCoIr-TH/C exhibited the enhanced catalytic properties toward ethanol oxidation reaction in alkaline solutions. Particularly, the Pd9Co1Ir0.1-TH/C catalyst showed the best activity and stability toward EOR, especially at low potentials (< -0.25 V). And Ir sites not only resisted CO poison effectively, but also shifted the initial oxidation potential of ethanol negatively. Meanwhile, the selectivity of C1 products during the electrocatalytic oxidation of ethanol has been greatly improved with the increase of Ir content. The enhanced reactivities of PdCo-TH/C and PdCoIr-TH/C could be attributed to: (a) The coexistence of Co sites and Ir sites on the surfaces can generate OHad species which can promote the oxidation of intermediate adsorbed species on Pd sites and (b) the negative shift in electron binding energy of Pd due to the addition of Ir may make reaction intermediates desorb more difficultly, which might make the reactivity of PdCoIr-TH/C differ from that of PdCo-TH/C. This research work has demostrated a strategic approach for future development in high efficiency catalysts used for DEFCs.
Graphical Abstract
Keywords
tetrahedron alloy nanocatalysts, PdCoIr, PdCo, ethanol oxidation reaction, electrocatalysis
Publication Date
2021-02-28
Online Available Date
2020-06-10
Revised Date
2020-06-09
Received Date
2020-05-15
Recommended Citation
Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun.
Preparation of PdCoIr Tetrahedron Nanocatalysts and Its Performance toward Ethanol Oxidation Reaction[J]. Journal of Electrochemistry,
2021
,
27(1): 63-75.
DOI: 10.13208/j.electrochem.200515
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss1/10
References
[1]
Wang Y, Zou S Z, Cai W B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials[J]. Catalysts, 2015,5(3):1507-1534.
doi: 10.3390/catal5031507
URL
[2]
Li Z J, Chen Y F, Fu G T, Chen Y, Sun D M, Lee J M, Tang Y W. Porous PdRh nanobowls: facile synjournal and activity for alkaline ethanol oxidation[J]. Nanoscale, 2019,11(6):2974-2980.
URL
pmid: 30693934
[3]
Sheng J L, Kang J H, Hu Z X, Yu Y, Fu X Z, Sun R, Wong C P. Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(32):15789-15796.
doi: 10.1039/C8TA04181D
URL
[4]
Dutta A, Datta J. Energy efficient role of Ni/NiO in PdNi nano catalyst used in alkaline DEFC[J]. J. Mater. Chem. A, 2014,2:3237-3250.
doi: 10.1039/c3ta12708g
URL
[5]
Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanc-ed infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
doi: 10.1021/cs401198t
URL
[6]
Du W X, Mackenzie K E, Milano D F, Deskins N A, Su D, Teng X W. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal., 2012,2(2):287-297.
doi: 10.1021/cs2005955
URL
[7]
Pereira A O, Miranda C R. Atomic scale insights into ethanol oxidation on Pt, Pd and Au metallic nanofilms: A DFT with van der Waals interactions[J]. Appl. Surf. Sci., 2014,288:564-571.
doi: 10.1016/j.apsusc.2013.10.074
URL
[8]
Fanga X, Wanga L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. J. Power Sources, 2010,195:1375-1378.
doi: 10.1016/j.jpowsour.2009.09.025
URL
[9]
Guo J C, Huang R, Li Y, Yu Z Y, Wang L Y, Huang L, Xu B B, Ye J Y, Sun S G. Surface structure effects of high-index faceted Pd nanocrystals decorated by Au submonolayer in enhancing the catalytic activity for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2019,123(38):23554-23562.
doi: 10.1021/acs.jpcc.9b07061
URL
[10]
Zhou Z Y, Wang Q A, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55:7995-7999.
doi: 10.1016/j.electacta.2010.02.071
URL
[11]
Huang W J, Ma X Y, Wang H, Feng R F, Zhou J G, Duchesne P N, Zhang P, Chen F J, Han N, Zhao F P, Zhou J H, Cai W B, Li Y G. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Adv. Mater., 2017,29(37):1703057.
doi: 10.1002/adma.v29.37
URL
[12] Chen Y M(陈玉梅), Liang Z X(梁志修), Chen S L(陈胜利). Synjournal and Electrocatalytic Properties of Ni-Pd/C Catalysts with Pd-enriched Surface[J]. J. Electrochem. (电化学), 2009,15(4):371-375.
[13]
Lin H H, Muzzio M, Wei K C, Zhang P, Li J R, Li N, Yin Z Y, Su D, Sun S H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: enhanced activity and C1 pathway selectivity[J]. ACS Appl. Energy Mater., 2019,2:8701-8706.
doi: 10.1021/acsaem.9b01674
URL
[14]
Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2018,122(39):22448-22459.
doi: 10.1021/acs.jpcc.8b05812
URL
[15]
Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett., 2017,688:92-97.
doi: 10.1016/j.cplett.2017.09.045
URL
[16]
Chang Q W, Kattel S, Li X, Liang Z X, Tackett B M, Denny S R, Zhang P, Su D, Chen J G G, Chen Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catal., 2019,9(9):7618-7625.
doi: 10.1021/acscatal.9b02039
URL
[17]
Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)PtIr(shell) electrocatalyst[J]. J. the Am. Chem. Soc., 2019,141(24):9629-9636.
doi: 10.1021/jacs.9b03474
URL
[18]
Lai S C S, Kleijn S E F, Öztürk F T Z, Vellinga V C V, Koning J, Rodriguez P, Koper MTM. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction[J]. Catal. Today, 2010,154(1-2):92-104.
doi: 10.1016/j.cattod.2010.01.060
URL
[19]
Zanata C R, Martins C A, Teixeira-Neto É, Giz M J, Camara G A. Two-step synjournal of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation[J]. J. Catal., 2019,377:358-366.
doi: 10.1016/j.jcat.2019.07.042
URL
[20]
Li S W, Yang H L, Zou H, Yang M, Liu X D, Jin J, Ma J T. Palladium nanoparticles anchored on NCNTs@NGS with a three-dimensional sandwich-stacked framework as an advanced electrocatalyst for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(30):14717-14724.
doi: 10.1039/C8TA04471F
URL
[21]
Xu H, Song P P, Zhang Y P, Du Y K. 3D-2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation[J]. Nanoscale, 2018. 10(26):12605-12611.
URL
pmid: 29938253
[22]
Guo F, Li Y J, Fan B A, Liu Y, Lu L L, Lei Y. Carbon- and binder-free core-shell nanowire arrays for efficient ethanol electro-oxidation in alkaline medium[J]. ACS Appl. Mater. Inter., 2018,10(5):4705-4714.
doi: 10.1021/acsami.7b16615
URL
[23]
Shu Y L, Shi X Q, Ji Y Y, Wen Y, Guo X Y, Ying Y, Wu Y P, Yang H F. Hollow echinus-like PdCuCo alloy for superior efficient Catal. of ethanol[J]. ACS Appl. Mater. Inter., 2018,10(5):4743-4749.
doi: 10.1021/acsami.7b17731
URL
[24]
Lv H, Wang H, Lopes A, Xu D D, Liu B. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis[J]. Applied Catal. B - Environ., 2019,249:116-125.
doi: 10.1016/j.apcatb.2019.02.068
URL
[25]
Ning L N, Zhu A M, Deng M, Zhang Q G, Liu Q L. Novel H-PdSnNi catalyst with enhanced ethanol electrooxidation performance in alkaline medium[J]. Electrochim. Acta, 2018,259:1145-1153.
doi: 10.1016/j.electacta.2017.10.112
URL
[26]
Wei M, Zhang L L, Luo D, Ding L X, Wang S Q, Wang H H. Graphene-assisted synjournal of PdFe-embedded porous carbon nanofibers for efficient ethanol electrooxidation[J]. Electrochim. Acta, 2018,289:311-318.
doi: 10.1016/j.electacta.2018.09.054
URL
[27] Yang T, Wang Y H, Wei W X, Ding X R, He M S, Yu T T, Zhao H, Zhang D E. Synjournal of octahedral Pt-Ni-Ir yolk-shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions[J]. Nanoscale, 2019,111(48):23206-23216.
[28]
Yang T, Ma Y X, Huang Q L, Cao G J. Palladium-iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction[J]. Nano Energy, 2016,19:257-268.
doi: 10.1016/j.nanoen.2015.11.002
URL
[29]
Yang T, Ma Y Q, Huang Q L, He M S, Cao G J, Sun X, Zhang D G, Wang M Y, Zhao H, Tong Z W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016,8(36):23646-23654.
doi: 10.1021/acsami.6b05726
URL
[30]
Yang T, Cao G J, Huang Q L, Ma Y X, Wan S, Zhao H, Li N, Yin F J, Sun X, Zhang D E, Wang M Y. Truncated octahedral platinum-nickel-iridium ternary electro-catalyst for oxygen reduction reaction[J]. J. Power Sources, 2015,291:201-208.
doi: 10.1016/j.jpowsour.2015.05.032
URL
[31]
Zhang J W, Chen M S, Li H Q, Li Y J, Ye J Y, Cao Z M, Fang M L, Kuang Q, Zheng J, Xie Z X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells[J]. Nano Energy, 2018,44:127-134.
doi: 10.1016/j.nanoen.2017.11.075
URL
[32]
Hwang S J, Yoo S J, Jeon T Y, Lee K S, Lim T H, Sung Y E, Kim S K. Facile synjournal of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction[J]. Chem. Commun., 2010,46(44):8401-8403.
doi: 10.1039/c0cc03125a
URL
[33]
Shen S Y, Zhao T S, Xu J B. Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media[J]. Electrochim. Acta, 2010,55(28):9179-9184.
doi: 10.1016/j.electacta.2010.09.018
URL
[34]
Wang X, Tang Y, Gao Y, Lu T H. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell[J]. J. Power Sources, 2008,175(2):784-788.
doi: 10.1016/j.jpowsour.2007.10.011
URL
[35]
Shen S Y, Zhao T S, Xu J B, Li Y S. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells[J]. Energy Envir. Sci., 2011,4(4):1428-1433.
doi: 10.1039/c0ee00579g
URL
[36]
Kavanagh R, Cao X M, Lin W F, Hardacre C, Hu P. Origin of low CO2 selectivity on platinum in the direct ethanol fuel cell[J]. Angew. Chem. Int. Ed., 2012,51(7):1572-1575.
doi: 10.1002/anie.v51.7
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons