Corresponding Author

Yun-Feng Zhang(zhangyf329@gmail.com)


Herein, the lithiated sulfonated graphene oxide (Li-SGO) was successfully prepared via three steps by sulfonation of graphene oxide with 3-merraptnpropylt rimethnxysilane, oxidation of thiol into sulfonate with hydrogen peroxide and lithiation of sulfonate with aqueous lithium hydroxide. The as-prepared Li-SGO was then introduced into the semi-interpenetrating networks of single ion conducting polymer electrolyte (Li-SGO-FPAS) and poly vinylidenefluoride-hexafluoro propylene (PVDF-HFP) binder by in-situ polymerization to fabricate the porous single ion conducting polymer electrolyte membrane (Li-SGO-po-FPAS) generated from the poor compatibility between aromatic Li-SGO-FPAS and aliphatic PVDF-HFP binder. The key properties such as morphology, porosity, solvent uptake, mechanical strength, flexibility, lithium ion transference number, ionic conductivity and rate-capacity were successfully investigated. In addition, the neat single ion polymer electrolyte membrane without Li-SGO (FPAS) (po-FPAS) was prepared for comparison. The Li-SGO-po-FPAS possessed the high porosity of 55.9% and electrolyte uptake of 139.3wt.%, which are much higher than the values derived from the PP separator. As a result, the enhanced ionic conductivities of 0.23 mS·cm-1 and 1.84 mS·cm-1 were obtained at room temperature and 80℃, respectively, comparing to those of 0.14 mS·cm-1 and 1.20 mS·cm-1 for the po-FPA membrane. Furthermore, the mechanical strength of 9.9 MPa was obtained for the Li-SGO-po-FPAS, which is acceptable for the application in Li-ion batteries. The electrochemical characterizations indicate the better compatibility between the single ion conducting polymer electrolyte and the electrode interface after doping with the Li-SGO. The Li-SGO-po-FPAS showed the lithium ion transference number of 0.91 and electrochemical window of 4.6 V vs. Li+/Li. The Li|LiFePO4 Li-ion battery assembled from the Li-SGO-po-FPAS exhibited good cyclability and higher C-rate capacity. The results suggest that the treatment of GO by lithiation and sulfonation processes is useful for application in single ion conducting polymer electrolyte, and it is also favorable for improving the comprehensive performance of single ion conducting polymer electrolyte, subsequently superior battery performance.

Graphical Abstract


lithium-ion battery, single-ion conducting polymer electrolyte, porosity, ionic conductivity, sulfonated graphene oxide

Publication Date


Online Available Date


Revised Date


Received Date



[1] Hu J(胡静), Huang B B(黄碧斌), Jiang L P(蒋莉萍), Feng K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power (中国电力), 2020,53(1):100-107.

[2] Lee K T, Jeong S, Cho J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts Chem. Res, 2012,46(5):1161-1170.
doi: 10.1021/ar200224h URL

[3] Chen W, Lei T Y, Wu C Y, Deng M, Gong C H, Hu K, Ma Y C, Dai L P, Lü W Q, He W D, Liu X J, Xiong J, Yan C L. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Adv. Energy Mater., 2018,8(10):1702348.
doi: 10.1002/aenm.201702348 URL

[4] Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017,29(44):1703548-n/a.
URL pmid: 29024072

[5] Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017,46(3):797-815.
doi: 10.1039/c6cs00491a URL pmid: 28098280

[6] Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018,6(2):289-295.
doi: 10.1002/ente.v6.2 URL

[7] Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020,24:579-587.

[8] Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020,32(10):1905771.
doi: 10.1002/adma.v32.10 URL

[9] Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020,11(2):461-471.
doi: 10.1039/C9PY01035A URL

[10] Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A , 2020,8(4):1557-1577.
doi: 10.1039/C9TA11178F URL

[11] Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020,30(4):1906444.
doi: 10.1002/adfm.v30.4 URL

[12] Zhang Y F, Liu Y, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Fluorene-containing cardo and fully aromatic single ion conducting polymer electrolyte for room temperature, high performance lithium ion batteries[J]. ChemistrySelect, 2017,2(26):7904-7908.
doi: 10.1002/slct.201701006 URL

[13] Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016,306:152-161.
doi: 10.1016/j.jpowsour.2015.12.010 URL

[14] Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014,4(83):43857-43864.
doi: 10.1039/C4RA08709G URL

[15] Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013,3(35):14934-14937.
doi: 10.1039/c3ra41167b URL

[16] Li Z, Yao Q M, Zhang Q, Zhao Y Q, Gao D X, Li S S, Xu S M. Creating ionic channels in single-ion conducting solid polymer electrolyte by manipulating phase separation structure[J]. J. Mater. Chem. A, 2018,6(48):24848-24859.
doi: 10.1039/C8TA08967A URL

[17] Rohan R, Sun Y B, Cai W W, Pareek K, Zhang Y F, Xu G D, Cheng H S. Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries[J]. J. Mater. Chem. A, 2014,2(9):2960-2967.
doi: 10.1039/C3TA13765A URL

[18] Wu P(吴鹏), Li Z L(李忠伦), Y Z(余智), Liu P B(刘鹏波). Preparation of porous polyimide film with low dielectric constant by nonsolvent induced phase separation[J]. Polym. Mater. Sci. Eng. (高分子材料科学与工程), 2018,34(3):132-137.

[19] Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019,9:19320.
doi: 10.1038/s41598-019-55865-6 URL pmid: 31848415

[20] Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci. , 2018,568:22-29.
doi: 10.1016/j.memsci.2018.09.052 URL

[21] Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu. (化学教育(中英文)), 2020,41(2):76-80.

[22] Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6(20):17534-17542.
URL pmid: 25225970

[23] Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018,397:79-86.
doi: 10.1016/j.jpowsour.2018.07.007 URL

[24] Liu X P, Yang Z H, Zhang Y F, Li C C, Dong J M, Liu Y, Cheng H S. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2017,42(15):10275-10284.
doi: 10.1016/j.ijhydene.2017.02.128 URL

[25] Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. of Electrochem. (电化学), 2019,25(5):621-630.

[26] Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin. (复合材料学报), 2020: 37(5):1070-1080.

[27] Zhang Y F, Ting J W Y, Rohan R, Cai W W, Li J, Xu G D, Chen Z X, Lin A, Cheng H S. Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide[J]. J. Mater. Sci. , 2014,49(9):3442-3450.
doi: 10.1007/s10853-014-8055-0 URL

[28] Li C C, Zhang Y F, Liu X P, Dong J M, Wang J Y, Yang Z H, Cheng H S. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. J. Mater. Sci., 2018,53(7):5501-5510.
doi: 10.1007/s10853-017-1945-1 URL

[29] Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci. , 2016,507:99-106.
doi: 10.1016/j.memsci.2016.02.002 URL

[30] Zhai C X, Zhou H H, Gao T, Zhao L L, Lin S C. Electrostatically tuned microdomain morphology and phase-dependent ion transport anisotropy in single-ion conducting block copolyelectrolytes[J]. Macromolecules, 2018,51(12):4471-4483.
doi: 10.1021/acs.macromol.8b00451 URL

[31] Nguyen H D, Kim G T, Shi J L, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy Environ. Sci., 2018,11(11):3298-3309.
doi: 10.1039/C8EE02093K URL

[32] Kamal A Z, Çelik S Ü, Bozkurt A. Single ion conducting blend polymer electrolytes based on LiPAAOB and PPEGMA[J]. J. Inorg. Organomet. Polym. Mater., 2018,28(4):1616-1623.
doi: 10.1007/s10904-018-0805-z URL

[33] Zhang Y F, Rohan R, Sun Y B, Cai W W, Xu G D, Lin A, Cheng H S. A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability[J]. RSC Adv., 2014,4(40):21163-21170.
doi: 10.1039/C4RA02729A URL

[34] Hu M F, Yuan Y, Liu Y J, Tian L Y, Zhang Y Y, Long D H. Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode[J]. Electrochim. Acta, 2019,302:301-309.
doi: 10.1016/j.electacta.2019.02.045 URL

[35] Deng K R, Qin J X, Wang S J, Ren S, Han D M, Xiao M, Meng Y Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018,14(31):1801420.
doi: 10.1002/smll.v14.31 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.