Corresponding Author

Liang Li(liliang@usst.edu.cn)


High-performance electrocatalysts play a vital role in the commercial application of direct fuel cells. Current anode materials still have such problems as low activity, easy poisoning and high cost. In this study, a new type of nano- palladium (Pd) catalyst was prepared by dipping method using layered double hydroxides (LDHs) as the carrier. X-ray diffractometer, scanning electron microscope (SEM), inductively coupled plasma mass spectrometer (ICP-MS), energy spectrometer, transmission electron microscope (TEM), cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscope were used to analyze the structure and electrocatalytic performance of the catalyst. The results showed that the newly prepared Pd/Mg-Al-LDHs still maintained the layered structure of LDHs, and the metal Pd was evenly dispersed between the layers of hydrotalcite. Cyclic voltammetric curves showed that under alkaline conditions, the peak current density of Pd/Mg-Al-LDHs with 7% Pd in electrocatalytic ethanol was 36 mA·cm-2. The peak current density of commercial Pd/C in electrocatalytic ethanol was 30 mA·cm-2, and Pd/Mg-Al-LDHs exhibited better resistance to intermediate product poisoning. The factors including ethanol concentration, scanning rate and temperature were found to be effective, in particular, peak current had a direct effect. The chronoamperometric test revealed that Pd/Mg-Al-LDHs displayed higher electrocatalytic activity and stability toward ethanol than Pd/C, and the current density of Pd/Mg-Al-LDHs at 2000 s was 12 times to that of the commercial Pd/C. The electrochemical impedance data showed that Pd intercalation could significantly improve the conductivity of Mg-Al-LDHs and reduce the resistance to charge transfer during the electrocatalytic process.

Graphical Abstract


palladium, electro catalysis, anode catalyst, layered double hydroxides, direct ethanol fuel cells

Publication Date


Online Available Date


Revised Date


Received Date



[1] Kamarudin M Z F, Kamarudin S K, Masdar M S, Daud W R W. Review: Direct ethanol fuel cells[J]. Int. J. Hydrog. Energy, 2013,38(22):9438-9453.
doi: 10.1016/j.ijhydene.2012.07.059 URL

[2] Chu Y H, Shul Y G. Alcohol crossover behavior in direct alcohol fuel cells (DAFCs) system[J]. Fuel Cells, 2012,12(1):109-115.
doi: 10.1002/fuce.201100044 URL

[3] Choudhary A K, Pramanik H. Addition of rhenium (Re) to Pt-Ru/f-MWCNT anode electrocatalysts for enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell[J]. Int. J. Hydrog. Energy, 2020,45(24):13300-13321.
doi: 10.1016/j.ijhydene.2020.03.044 URL

[4] Li Z P, Lu H L, Li Q, Zhao X S, Guo P Z. Template synjournal of palladium nanotubes and their electrocatalytic properties[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2015,464(5):129-133.
doi: 10.1016/j.colsurfa.2014.10.010 URL

[5] Souza F M, Böhnstedt P, Pinheiro V S, Oliveira L A, Batista B L, Parreira L S, Antunes R A, Santos M C. Niobium increasing the electrocatalytic activity of palladium for alkaline direct ethanol fuel cell[J]. J. Electroanal. Chem., 2020,858(16):113824-113832.
doi: 10.1016/j.jelechem.2020.113824 URL

[6] Muneeb O, Estrada J, Tran L, Nguyen K, Flores J, Hu S Z, Fry-Petit A M, Scudiero L, Ha S, Haan J L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper[J]. Electrochim. Acta, 2016,218(7):133-139.
doi: 10.1016/j.electacta.2016.09.105 URL

[7] Zhang R L, Duan J J, Han Z, Feng J J, Huang H, Zhang Q L, Wang A J. One-step aqueous synjournal of hierarchically multi-branched PdRuCu nanoassemblies with highly boosted catalytic activity for ethanol and ethylene glycol oxidation reactions[J]. Appl. Surf. Sci., 2020,506(26):144791-144799.
doi: 10.1016/j.apsusc.2019.144791 URL

[8] Chowdhury S R, Maiyalagan T, Bhattachraya S K, Gayen A. Influence of phosphorus on the electrocatalytic activity of palladium nickel nanoalloy supported on N-doped reduced graphene oxide for ethanol oxidation reaction[J]. Electrochim. Acta, 2020,342(16):136028-136042.
doi: 10.1016/j.electacta.2020.136028 URL

[9] Yang H L, Yu Z N, Li S W, Zhang Q L, Jin J, Ma J T. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media[J]. J. Catal., 2017,353(3):256-264.
doi: 10.1016/j.jcat.2017.07.025 URL

[10] Safavi A, Kazemi H, Momeni S, Tohidi M, Mehrin P K. Facile electrocatalytic oxidation of ethanol using Ag/Pd nanoalloys modified carbon ionic liquid electrode[J]. Int. J. Hydrog. Energy, 2013,38(8):3380-3386.
doi: 10.1016/j.ijhydene.2012.12.040 URL

[11] Ramulifho T, Ozoemena K I, Modibedi R M, Jafta C J, Mathe M K. Fast microwave-assisted solvothermal synjournal of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium[J]. Electrochim. Acta, 2012,59(6):310-320.
doi: 10.1016/j.electacta.2011.10.071 URL

[12] Wang Y, Shi F F, Yang Y Y, Cai W B. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media[J]. J. Power Sources, 2013,243(4):369-373.
doi: 10.1016/j.jpowsour.2013.06.021 URL

[13] Mao H M, Wang L L, Zhu P P, Xu Q J, Li Q X. Carbon-supported PdSn-SnO2 catalyst for ethanol electro-oxidation in alkaline media[J]. Int. J. Hydrog. Energy, 2014,39(31):17583-17588.
doi: 10.1016/j.ijhydene.2014.08.079 URL

[14] Liu S Y, Zhou Q Z, Jin Z N, Jiang H J, Jiang X Z. Dodecylsulfate anion embedded layered double hydroxide supported nanopalladium catalyst for the suzuki reaction[J]. Chin. J. Catal., 2010,31(5):557-561.
doi: 10.1016/S1872-2067(09)60072-3 URL

[15] Zhou L L, Xie X L, Xie R G, Guo H, Wang M H, Wang L J. Facile synjournal of AuPd nanowires anchored on the hybrid of layered double hydroxide and carbon black for enhancing catalytic performance towards ethanol electro-oxidation[J]. Int. J. Hydrog. Energy, 2019,44(47):25589-25598.
doi: 10.1016/j.ijhydene.2019.07.253 URL

[16] Almeida T S, Yu Y, de Andrade A R, Abruna H D. Employing iron and nickel to enhance ethanol oxidation of Pd-based anodes in alkaline medium[J]. Electrochim. Acta, 2019,295(13):751-758.
doi: 10.1016/j.electacta.2018.10.187 URL

[17] Wang Y R, He Q L, Ding K Q, Wei H G, Guo J, Wang Q, O′Connor R, Huang X H, Luo Z P, Shen T D, Wei S Y, Guo Z H. Multiwalled carbon nanotubes composited with palladium nanocatalysts for highly efficient ethanol oxidation[J]. J. Electrochem. Soc., 2015,162(7):F755-F763.
doi: 10.1149/2.0751507jes URL

[18] Li L, Yang Y, Wang Y W, Liang M L, Huang Y X. Electrochemical activity of layered double hydroxides supported nano Pt clusters toward methanol oxidation reaction in alkaline solutions[J]. J. Mater. Res. Technol-JMRT, 2020,9(3):5463-5473.

[19] Zhou W, Zhai C, Du Y, Xu J K, Yang P. Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium[J]. Int. J. Hydrog. Energy, 2009,34(23):9316-9323.
doi: 10.1016/j.ijhydene.2009.09.059 URL

[20] Zhang Y M, Liu Y, Liu W H, Li X Y, Mao L Q. Synjournal of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media[J]. Appl. Surf. Sci., 2017,407(1):64-71.
doi: 10.1016/j.apsusc.2017.02.158 URL

[21] Zhao Y C, Yang X L, Tian J N, Wang F Y, Zhan L. Methanol electro-oxidation on Ni@Pd core-shell nano-particles supported on multi-walled carbon nanotubes in alkaline media[J]. Int. J. Hydrog. Energy, 2010,35(8):3249-3257.
doi: 10.1016/j.ijhydene.2010.01.112 URL

[22] Ahmad Y H, Mohamed A T, Alashraf A, Matalqeh M, El-Shafei A, Al-Qaradawi S Y, Aljaber A S. Highly porous PtPd nanoclusters synthesized via selective chemical etching as efficient catalyst for ethanol electro-oxidation[J]. Appl. Sur. Sci., 2020,508(16):145222-145231.
doi: 10.1016/j.apsusc.2019.145222 URL

[23] Zhu J Y, Chen S Q, Xue Q, Li F M, Yao H C, Xu L, Chen Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction[J]. Appl. Catal. B - Environ, 2020,264(18):118520-118527.
doi: 10.1016/j.apcatb.2019.118520 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.