Corresponding Author

Jing-Hong Zhou(jhzhou@ecust.edu.cn)


Flexible supercapacitor is one of the most promising energy storage devices for portable and wearable electronic products due to its advantages of high power density, fast charging and long cycle life. Therefore, self-supporting flexible electrode materials with high performance have attained more and more attention both in academia and in industry recently. In this work, using bacterial cellulose (BC) as a flexible substrate, the bacterial cellulose/nickel-cobalt sulfide@polypyrrole (BC/CoNi2S4@PPy) flexible composites with three-dimensional porous network and good conductivity were prepared by a combined solvothermal-in-situ polymerization-vacuum filtration method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectrometry, N2 physisorption, tensile strength and contact angle measurements. Their electrochemical performances were tested by cyclic voltammetry, galvanostatic charge/discharge testing and electrochemical impedance spectroscopy. The results show that the three-dimensional porous network of BC fibers with rich oxygen-containing surface groups play a guiding role in the growth of the redox active material CoNi2S4 and the distribution of conductive polymer PPy, resulting in uniformly distributed CoNi2S4 nanospheres in the network of BC fibers, both coated evenly with a layer of conductive PPy. The resulting BC/CoNi2S4@PPy composites, a three-dimensional conductive network with high porosity, displayed good mechanical property (tensile strength up to 28.0±0.1 MPa), hydrophilicity (the instantaneous contact angle in 6 mol·L-1 KOH is 43.6°), as well as excellent electrochemical performance. The specific capacitance of the flexible BC/CoNi2S4@PPy was 2670 F·g-1 at 1 A·g-1 in a three-electrode system, and retained 82.7% after 10000 charge and discharge cycles. In addition, the electrochemical performance remained unchanged after 1000 times of repeated bending. In an asymmetric supercapacitor composed of BC/CoNi2S4@PPy and activated carbon, the area specific capacitance was 1428 F·g-1 at 1 A·g-1. The asymmetric supercapacitor achieved the maximum energy density of 49.8 Wh·kg-1 and power density of 741.8 W·kg-1.

Graphical Abstract


flexible electrode material, bacterial cellulose, nickel-cobalt sulfide, polypyrrole

Publication Date


Online Available Date


Revised Date


Received Date



[1] Shi H M, Wen G L, Nie Y, Zhang G H, Duan H G. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion[J]. Nanoscale, 2020,12(9):5261-5285.
URL pmid: 32091524

[2] Dai C L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T. Recent progress in graphene-based electrodes for flexible batteries[J]. InfoMat, 2020,2(3):509-526.
doi: 10.1002/inf2.v2.3 URL

[3] Luo Y, Wu P C, Li J W, Yang S C, Wu K L, Wu J N, Meng G H, Liu Z Y, Guo X H. Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine[J]. Chem. Eng. J., 2020,391:123535.
doi: 10.1016/j.cej.2019.123535 URL

[4] Ye J B, Guo L X, Zheng S S, Feng Y J, Zhang T T, Yang Z C, Yuan Q S, Shen G P, Zhang Z. Synjournal of bacterial cellulose based SnO2-PPy nanocomposites as potential flexible, highly conductive material[J]. Mater. Lett., 2019,253:372-376.
doi: 10.1016/j.matlet.2019.06.096 URL

[5] Pirsa S, Shamusi T, Kia E M. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles[J]. J. Appl. Polym. Sci., 2018,135(33-34):46617.
doi: 10.1002/app.46617 URL

[6] Liu R, Ma L N, Huang S, Mei J, Li E Y, Yuan G H. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors[J]. J. Phys. Chem. C, 2016,120(50):28480-28488.
doi: 10.1021/acs.jpcc.6b10475 URL

[7] Müller D, Rambo C R, Recouvreux D O S, Porto L M, Barra G M O. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers[J]. Synth. Met., 2011,161(1-2):106-111.
doi: 10.1016/j.synthmet.2010.11.005 URL

[8] Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors[J]. J. Mater. Chem. A, 2018,6(34):16617-16626.
doi: 10.1039/C8TA05673K URL

[9] Liu P, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. One-step hydrothermal synjournal of CoNi2S4 for hybrid supercapacitor electrodes[J]. Nano, 2019,14(7):1950088.
doi: 10.1142/S1793292019500887 URL

[10] Li L, Lou Z, Han W, Chen D, Jiang K, Shen G Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes[J]. Adv. Mater. Technol., 2017,2(3):1600282.
doi: 10.1002/admt.201600282 URL

[11] Peng S, Fan L L, Wei C Z, Liu X H, Zhang H W, Xu W L, Xu J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohydr. Polym., 2017,157:344-352.
URL pmid: 27987937

[12] Yang S R(杨实润). Preparation and electrochemical performance of the nickel cobalt sulfide as supercapacitor electrode material[D]. East China University of Science and Technology (华东理工大学), 2018.

[13] Mao X L, Xu J H, He X, Yang W Y, Yang Y J, Xu L, Zhao Y T, Zhou Y J. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes[J]. Appl. Surf. Sci., 2017,435:1228-1236.
doi: 10.1016/j.apsusc.2017.11.248 URL

[14] Mykhailiv O, Imierska M, Petelczyc M, Echegoyen L, Plonska-Brzezinska M E. Chemical versus electrochemical synjournal of carbon nano-onion/polypyrrole composites for supercapacitor electrodes[J]. Chem.-Eur. J., 2015,21(15):5783-5793.
doi: 10.1002/chem.201406126 URL pmid: 25736714

[15] Wu X M, Lian M. Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel[J]. J. Power Sources, 2017,362:184-191.
doi: 10.1016/j.jpowsour.2017.07.042 URL

[16] Wang F, Kim H J, Park S K, Kee C D, Kim S J, Oh I K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network[J]. Compos. Sci. Technol., 2016,128:33-40.
doi: 10.1016/j.compscitech.2016.03.012 URL

[17] Zhang Y H, Shang Z, Shen M X, Chowdhury S P, Ignaszak A, Sun S H, Ni Y H. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors[J]. ACS Sustain. Chem. Eng., 2019,7(13):11175-11185.
doi: 10.1021/acssuschemeng.9b00321 URL

[18] Luo H L, Dong J J, Zhang Y, Li G, Guo R S, Zuo G F, Ye M D, Wang Z R, Yang Z W, Wan Y Z. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer, in situ, culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chem. Eng. J., 2018,334:1148-1158.
doi: 10.1016/j.cej.2017.11.065 URL

[19] Qian T, Yu C F, Wu S S, Shen J. A facilely prepared poly-pyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes[J]. J. Mater. Chem. A, 2013,1(22):6539-6542.
doi: 10.1039/c3ta11146f URL

[20] Lv X D, Li G H, Pang Z Y, Li D W, Lei L, Lü P F, Mushtaq M, Wei Q F. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application[J]. J. Phys. Chem. Solids, 2018,116:153-160.
doi: 10.1016/j.jpcs.2018.01.012 URL

[21] Peng S, Xu Q, Fan L L, Wei C Z, Bao H F, Xu W L, Xu J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application[J]. Synth. Met., 2016,222:285-292.
doi: 10.1016/j.synthmet.2016.11.002 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.