Corresponding Author

Kang-Hua Chen(kanghuachen@csu.edu.cn)


In the lithium-sulfurized polyacrylonitrile battery system, the formation and growth of lithium dendrites in the negative electrode seriously deteriorate the charge and discharge performance of the battery. If the growth of lithium dendrites pierces the separator and causes thermal runaway, it will also bring serious damage to the battery, causing potential safety risks. In the carbonate electrolyte that is more conducive to stabilizing the positive electrode sulfurized polyacrylonitrile material, the growth of lithium dendrites is particularly serious. In this paper, magnesium nitrate was added to the carbonate electrolyte to investigate the combined effect of nitrate and magnesium ions on the surface modification of lithium metal. Studies have found that during the cycle, magnesium ions were reduced on the surface of the lithium negative electrode to form a lithium-magnesium alloy layer, which reduced excessive side reactions between the electrolyte and the negative electrode. The reduction of magnesium ions into magnesium metal could guide the uniform deposition of lithium ions and reduce the formation of lithium dendrites; at the same time, nitrate could form an SEI film with high ionic conductivity rich in nitrogen oxides with lithium ions, which could make lithium ions at the interface that conducts quickly at the location, and under the combined action of the two, the formation and growth of lithium dendrites were inhibited, and the cycle performance of the battery was improved. The experimental data showed that under the combined action of nitrate and magnesium ions, the growth of lithium dendrites was effectively inhibited. When the concentration of magnesium nitrate was 100 mmol·L-1, the coulombic efficiency of the lithium copper half-cell was significantly improved, and the cycle performance of lithium-sulfide polypropylene nitrile battery was also significantly enhanced. The capacity retention rate after 300 cycles was 71%, which was much higher than 61% of lithium nitrate and 50% without additives.

Graphical Abstract


magnesium nitrate, lithium dendirte, electrolyte additive, electrochemical property

Publication Date


Online Available Date


Revised Date


Received Date



[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
doi: 10.1038/35104644 URL

[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a URL

[3] Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K URL

[4] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z URL

[5] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741 URL

[6] Wang G L, Liu J C, Tang S, Li H Y, Cao D X. Cobalt oxide-graphene nanocomposite as anode materials for lithium-ion batteries[J]. J. Solid State Electrochem., 2011, 15(11-12): 2587-2592.
doi: 10.1007/s10008-010-1254-y URL

[7] Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nat. Energy, 2016, 1: 16114.
doi: 10.1038/nenergy.2016.114 URL

[8] Zhang X Q(张学强), Cheng X B(程新兵), Zhang Q(张强). Advances in interfaces between Li metal anode and electrolyte[J]. Adv. Mater. Inter., 2018, 5(2): 1701097.
doi: 10.1002/admi.201701097 URL

[9] Zhou D, Liu R L, He Y B, Li F Y, Liu M, Li B H, Yang Q H, Cai Q, Kang F Y. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Adv. Energy Mater., 2016, 6(7): 1502214.
doi: 10.1002/aenm.201502214 URL

[10] Guo Y P, Li H Q, Zhai T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[D]. Adv. Mater., 2017, 29(29): 1700007.

[11] Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Cent. Sci., 2016, 2(11): 790-801.
doi: 10.1021/acscentsci.6b00260 URL

[12] Zhang S S. Problem, status, and possible solutions for lithium metal anode of rechargeable batteries[J]. ACS Appl. Energy Mater., 2018, 1(3): 910-920.
doi: 10.1021/acsaem.8b00055 URL

[13] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115 URL

[14] Zheng G Y, Lee S W, Liang Z, Lee H W, Yan K, Yao H B, Wang H T, Li W Y, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nat. Nanotechnol., 2014, 9(8): 618-623.
doi: 10.1038/nnano.2014.152 URL

[15] Chen L, Connell J G, Nie A M, Huang Z N, Zavadil K R, Klavetter K C, Yuan Y F, Sharifi-Asl S, Shahbazian-Yassar R, Libera J A, Mane A U, Elam J W. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. Mater. Chem. A, 2017, 5(24): 12297-12309.
doi: 10.1039/C7TA03116E URL

[16] Zhu B, Jin Y, Hu X Z, Zheng Q H, Zhang S, Wang Q J, Zhu J. Poly(dimethylsiloxane) Thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Adv. Mater., 2017, 29(2): 1603755.
doi: 10.1002/adma.v29.2 URL

[17] Song J, Lee H, Choo M J, Park J K, Kim H T. Ionomer liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes[J]. Sci. Rep., 2015, 5: 14458.
doi: 10.1038/srep14458 URL

[18] Liu Y Y, Lin D C, Yuen P Y, Liu K, Xie J, Dauskardt R H, Cui Y. An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Adv. Mater., 2017, 29(10): 1605531.
doi: 10.1002/adma.v29.10 URL

[19] Liu W, Li W, Zhuo D, Zheng G Y, Lu Z D, Liu K, Cui Y. Core-shell nanoparticle coating as an interfacial layer for dendrite free lithium metal anodes[J]. ACS Cent. Sci., 2017, 3(2): 135-140.
doi: 10.1021/acscentsci.6b00389 URL

[20] Ma Y L, Zhou Z Z, Li C J, Wang L, Wang Y, Cheng X Q, Zuo P J, Du C Y, Huo H, Gao Y Z, Yin G P. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Mater., 2018, 11: 197-204.

[21] Ouyang Y, Guo Y P, Li D, Wei Y Q, Zhai T Y, Li H Q. Single additive with dual functional-ions for stabilizing lithium anodes[J]. ACS Appl. Mater. Inter., 2019, 11(12): 11360-11368.
doi: 10.1021/acsami.8b21420 URL

[22] Yan C, Yao Y X, Chen X, Cheng X B, Zhang X Q, Huang J Q, Zhang Q. Solvation chemistry of lithium nitrate in carbonate electrolyte for high voltage lithium metal battery[J]. Angew. Chem. Int. Ed., 2018, 130(43): 14055-14059.

[23] Guo J, Wen Z Y, Wu M F, Jin J, Liu Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochem. Commun., 2015, 51: 59-63.
doi: 10.1016/j.elecom.2014.12.008 URL

[24] Yuan Y X, Wu F, Chen G H, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. J. Energy Chem., 2019, 37: 197-203.
doi: 10.1016/j.jechem.2019.03.014 URL

[25] Jing P C, Lu H M, Yang W W, Cao Y, Xu B B, Cai W, Deng Y. Polyaniline-coated VS4@rGO nanocomposite as high-performance cathode material for magnesium batteries based on Mg2+/Li+ dual ion electrolytes[J]. Ionics, 2020, 26(2): 777-787.
doi: 10.1007/s11581-019-03239-3 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.