Corresponding Author

Hai-Jing Wang(wanghaijing@ihep.ac.cn);
Jing Guo(guojing@ustb.edu.cn)


Graphene film (GF) has excellent electrical and thermal conductivity, but low strength and hardness. In order to obtain good comprehensive mechanical properties to improve the practical value of GF, the concept of preparing GF-metal composite materials was proposed. This work was conducted to preliminarily study the feasibility of using electrodeposition method to prepare GF-metal composites. Two kinds of composites, GF-Cu and GF-Cr, were successfully prepared by using GF as the cathode, and pure Cu and DSA (Dimensionally Stable Anode) as the anodes, respectively, with applying DC power externally. Employing certain electrochemical parameters, the cation in the electrolyte moved towards the cathode directionally. Meanwhile, the interface bonding between GF and electrodeposited metals was investigated. The surface morphology and cross-section characterization of the composites by scanning electron microscopy showed that the interface bonding of the GF-Cr composite was tighter than that of the GF-Cu composite. In addition, two-dimensional disregistry analyses were performed for the GF and metals coating interface bonding. Through calculation and analysis, the disregistry of the (110) surface on Cr is 7.26%, while that of the (111) surface on Cu is 31.92% at the(0001) surface of C and at room temperature, indicating that the lattice matching degree of C and Cr is better than that of C and Cu, which is consistent with the experimental results. As the temperature increased, the disregistry value of C-Cr interface decreased, that is, increasing the temperature is conducive to the increase of lattice matching of both. The C-Cr binary phase diagram also showed that the carbide generated by the reaction of C and Cr would further enhance the interface bonding. The effect of heating on the C-Cu interface bonding was more complicated. The results of heat treatment experiments showed that the heating increased the diffusion distance of C element to the copper coating, while the disregistry value of C-Cu interface increased with the increase of temperature. However, the interface bonding of GF and Cu still needs to be improved.

Graphical Abstract


electrodeposition, graphene film, two-dimensional disregistry, Cu, Cr

Publication Date


Online Available Date


Revised Date


Received Date



[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
doi: 10.1126/science.1102896 URL

[2] Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
doi: 10.1126/science.1157996 URL

[3] Wang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Room-temperature ferromagnetism of graphene[J]. Nano Lett., 2009, 9(1): 220-224.
doi: 10.1021/nl802810g URL

[4] Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study[J]. Phys. Rev. B, 2004, 69(7): 075414.
doi: 10.1103/PhysRevB.69.075414 URL

[5] Zhao Z Z(赵真真), Ni W B(倪文彬), Gao N Y(高能越), Wang H B(王洪波), Zhao J W(赵健伟). Effects of graphene on the electrochemical behaviors of Ni(OH)2 as supercapacitor material[J]. J. Electrochem.(电化学), 2011, 17(3): 292-299.

[6] Hang L F, Zhao Y, Zhang H H, Liu G Q, Cai W P, Li Y, Qu L T. Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance[J]. Acta Mater., 2016, 105: 59-67.
doi: 10.1016/j.actamat.2015.12.029 URL

[7] Huang G, Wang H, Cheng P, Wang H Y, Sun B, Sun S, Zhang C C, Chen M M, Ding G F. Preparation and characterization of the graphene-Cu composite film by electrodeposition process[J]. Microelectron. Eng., 2016, 157: 7-12.
doi: 10.1016/j.mee.2016.02.006 URL

[8] Hou Y C(侯永超), Huang L J(黄林军), Wang Y X(王彦欣), Tang J G(唐建国), Liu J X(刘继宪), Wang Y(王瑶), Jiao J Q(焦吉庆), Wang W(王薇), Zhao Y C(赵运超). Preparation of graphene/silver hybrid materials and research of Raman enhanced performance[J]. Appl. Chem. Ind.(应用化工), 2016, 45(5): 806-809.

[9] Zhao Y R(赵亚茹), Li Y(李勇), Li H(李焕). Research progress of graphene reinforced copper matrix composites[J]. Surf. Technol.(表面技术), 2016, 45(5): 33-40.

[10] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv. Mater., 2012, 24(30): 4144-4150.
doi: 10.1002/adma.201200197 URL

[11] Pham V H, Cuong T V, Hur S H, Shin, E W, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
doi: 10.1016/j.carbon.2010.01.062 URL

[12] Shuai X R(帅骁睿), Yang S L(杨仕玲), Yang H C(杨化超), Wu S H(吴声豪), Duan L P(段良平). Research on the penetration an electrochemical energy storage of graphene paper electrode for supercapacitor[J]. NCM(化工新型材料), 2019, 47(1): 124-127.

[13] Gwon H, Kim H, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Flexible energy storage devices based on graphene paper[J]. Energy Environ. Sci., 2011, 4(4): 1277-1283.
doi: 10.1039/c0ee00640h URL

[14] Dai Y, Cai S D, Yang W J, Gao L, Tang W P, Xie J Y, Zhi J, Ju X M. Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50(12): 4648-4654.
doi: 10.1016/j.carbon.2012.05.053 URL

[15] Zan X. Flexible electrochemical biosensors based on interfacially assembled metal nanocrystals and graphene paper[D]. Singapore: Nanyang Technological University, 2016.

[16] Wang Z, Mao B Y, Wang Q L, Yu J, Dai J X, Song R G, Pu Z H, He D P, Wu Z, Mu S C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): 1704332.
doi: 10.1002/smll.v14.20 URL

[17] Kirihata K, Arai S, Uejima M, Hirota M. Fabrication of copper/single-walled carbon nanotube composite plating films by electrodeposition[J]. J. Radiol., 2015, 89(10): 1450.

[18] Danilov F I, Protsenko V S, Gordiienko V O, Kwon S C, Lee J Y, Kim M. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Appl. Surf. Sci., 2011, 257(18): 8048-8053.
doi: 10.1016/j.apsusc.2011.04.095 URL

[19] Cheng T(程韬), Jia J G(贾建刚), Ma Q(马勤), Ji G S(季根顺), Guo T M(郭铁明). Deposition of homogeneous copper layer on short carbon fibers using electrochemical method[J]. T. Mater. Heat Treat., 2014, 35(9): 167-171.

[20] Gao H C, Wang Y X, Xiao F, Ching C B, Duan H W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells[J]. J. Phys. Chem. C, 2012, 116(14): 7719-7725.
doi: 10.1021/jp3021276 URL

[21] Wang P(王鹏), Li C R(李长荣), Liu R(刘然), Shi S(师帅). Calculation of disregistry degree of ε-Cu precipitation induced by rare earth inclusion in steel[J]. J. Chin. Soc. Rear Earth.(中国稀土学报), 2018, 36(3): 314-318.

[22] Song Q(宋琴), Wu J W(武俊伟), Zhang H(张辉), Du C W(杜翠薇). Performance of Ti-based dimensionally stable anode for chromium plating application[J]. J. Chin. Soc. Corros. Prot.(中国腐蚀与防护学报), 2013, 33(6): 507-514.

[23] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metall. Trans., 1970, 1(7): 1987-1995.
doi: 10.1007/BF02642799 URL

[24] Shi R X(师瑞霞), Yang R C(杨瑞成), Zhou C H(周春华), Yin Y S(尹衍升), Ma L P(马来鹏). The relationship between lattice constants and temperature in EET[J]. J. Shanghai. Univ. -Eng. Sci.(山东大学学报: 工学版), 2004, 34(5): 5-8,98.

[25] Gómez M A, Romero J, Lousa A, Esteve J. Tribological performance of chromium/chromium carbide multilayers deposited by r.f. magnetron sputtering[J]. Surf. Coat. Technol., 2005, 200(5-6): 1819-1824.
doi: 10.1016/j.surfcoat.2005.08.060 URL

[26] Qin Z B, Luo Q, Zhang Q, Wu Z, Liu L, Shen B, Hu W B. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation[J]. Surf. Coat. Technol., 2018, 334: 402-409.
doi: 10.1016/j.surfcoat.2017.11.066 URL

[27] Cao T C(曹天赐). Research on the performance and mechanism of lithium metal-graphene paper composite anode[D]. Beijing: Beijing University of Technology, 2019.

[28] Yu Y N(余永宁). Materials science[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 777-781.

[29] Chen W R(陈蔚然). Crystal structure of graphite[J]. Carbon Tech.(炭素技术), 1990, 4: 39-40.

[30] Zhang H H(张恒华). Metal binary system phase diagram manual[J]. Heat Treat.(热处理), 2010, 25(1): 78.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.