Corresponding Author

Su-Li Wang(suliwang@dicp.ac.cn);
Gong-Quan Sun(gqsun@dicp.ac.cn)


Direct methanol fuel cell (DMFC), which directly converts the chemical energy of methanol fuel into electrical energy, has the advantages of high energy conversion efficiency, environmental friendliness, and abundance of fuel sources. DMFC is considered as the promising substitutes in the field of portable devices, military applications, and stationary power stations, while the broad application is severely hindered by the sluggish kinetic of methanol oxidation reaction (MOR) in the anode and the high cost of platinum (Pt)-based anodic electrocatalysts. Herein, a series of carbon supported PtxCuy (PtxCuy/C) binary metal electrocatalysts, featured with high activity and low consumption of precious metal, were prepared under the ambient environment by a simple liquid phase impregnation reduction method using ethanol as the solvent and sodium borohydride as the reducing agent. Uniform distribution of PtxCuy nanoparticles in the range of 2 ~ 4 nm was achieved by rationally optimizing the dropping rate, stoichiometric ratio, and reaction time. As revealed by XRD and TEM characterizations, adding way of the reducing agent into the metal salt precursor carbon slurry had a significant impact on the morphology. Compared with dumping, adding the reducing agent in a dropwise way was beneficial for obtaining nanoparticles with a smaller size and uniform distribution. By adjusting the amount of the reducing agent up to 20 times the molar amount of metal precursors, the complete reduction, signifying a higher loading and less waste of Pt precursors, can be safely ensured. When increasing the content of Cu precursors, those metal nanoparticles tended to connect into worm-like structures and the individual CuO phase was observed in PtCu3/C and PtCu4/C samples. MOR activity of as-prepared electrocatalysts was determined by systematically electrochemical measurements and an activity order of commercial Pt/C < Pt3Cu/C < PtCu4/C 3/C was revealed. In particular, the specific area activity of PtCu3/C was 2.86 mA·cm-2, which was 3.74 times higher than that of commercial Pt/C (0.94 mA·cm-2), while the electrochemical active area (ECSA) was only half of commercial Pt/C. It indicated the enhanced performance stemmed from the accelerated reaction process instead of the increased reaction site. This was further confirmed by density functional theory (DFT) calculations that the introduction of Cu as well as the formation of CuO phase can promote the hydrolysis reaction, and the subsequent produced *OH can promote the oxidation of CO-like intermediate species into CO2 through the bifunctional mechanism. The current work opens a new avenue for the convenient and controllable synthesis of binary Pt-Cu alloy electrocatalysts on MOR and facilitates the development of high-efficient and low-cost DMFC devices.

Graphical Abstract


PtxCuy/C electrocatalyst, methanol oxidation reaction, CuO

Publication Date


Online Available Date


Revised Date


Received Date



[1] Cha S W, O'Hayre R, Colella W, Prinz F B. Fuel cell fundamentals[M]. USA: John Wiley & Sons, 2016.

[2] Zhou W J(周卫江). Research on the anode catalysts for low-temperature direct alcohol fuel cells[D]. Graduate Un-iversity of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2003.

[3] Batista E A, Hoster H, Iwasita T. Analysis of FTIRS data and thermal effects during methanol oxidation on UHV-cleaned PtRu alloys[J]. Electroanal. Chem., 2003, 554(1): 265-271.

[4] Batista E A, Malpass G R P, Motheo A J, Iwasita T. New insight into the pathways of methanol oxidation[J]. Electro-chem. Commun., 2003, 5(10): 843-846.

[5] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catal. Today, 1997, 38(4): 445-457.
doi: 10.1016/S0920-5861(97)00054-0 URL

[6] Dunsch L. Modern aspects of electrochemistry[M]. Butterworths Scientific Publications, 1954.

[7] Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nat. Mater., 2008, 7(4): 333-338.
doi: 10.1038/nmat2156 pmid: 18345004

[8] Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with efficient nanointerface for alcohol fuels electrooxidation[J]. Nano-scale, 2019, 11(40): 18866-18873.

[9] Guo J S(郭军松). Studies on PtRu/C and PtRu black ele-ctrocatalysts for direct methanol fuel cells[D]. Graduate University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2007.

[10] Jiang L H(姜鲁华). Research on anode electrocatalysts for direct alcohol fuel cells[D]. Graduate University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2005.

[11] Liang H, Zhang X P, Wang Q Q, Han Y J, Fang Y X, Dong S J. Shape-control of Pt-Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J. Am. Chem. Soc., 2018, 140(3): 1142-1147.
doi: 10.1021/jacs.7b12353 pmid: 29283565

[12] Antolini E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells[J]. ACS Catal., 2014, 4(5): 1426-1440.
doi: 10.1021/cs4011875 URL

[13] Xu J F, Liu X Y, Chen Y, Zhou Y M, Lu T H, Tang Y W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis[J]. J. Mater. Chem., 2012, 22(44): 23659-23667.
doi: 10.1039/c2jm35649j URL

[14] Lu S Q, Li H M, Sun J Y, Zhuang Z B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles[J]. Nano Research, 2018, 11(4): 2058-2068.
doi: 10.1007/s12274-017-1822-x URL

[15] Li H H, Fu Q Q, Xu L, Ma S Y, Zheng Y R, Liu X J, Yu S H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis[J]. Energy. Environ. Sci., 2017, 10(8): 1751-1756.
doi: 10.1039/C7EE00573C URL

[16] Qin C L, Fan A X, Zhang X, Dai X P, Sun H, Ren D H, Dong Z, Wang Y, Luan C L, Ye J Y, Sun S G. The in situ etching assisted synjournal of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions[J]. Nanoscale, 2019, 11(18): 9061-9075.
doi: 10.1039/C8NR10231G URL

[17] Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells[J]. J. Catal., 2008, 258(1): 143-152.
doi: 10.1016/j.jcat.2008.06.007 URL

[18] Mao J J, Chen Y J, Pei J J, Wang D S, Li Y D. Pt-M (M = Cu, Fe, Zn, etc) bimetallic nanomaterials with abundant surface defects and robust catalytic properties[J]. Chem. Commun., 2016, 52(35): 5985-5988.
doi: 10.1039/C6CC02264B URL

[19] Papadimitriou S, Armyanov S, Valova E, Hubin A, Steen-haut O, Pavlidou E, Kokkinidis G, Sotiropoulos S. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process[J]. Phys. Chem. C, 2010, 114(11): 5217-5223.
doi: 10.1021/jp911568g URL

[20] Tritsaris G, Rossmeisl J. Methanol oxidation on model elemental and bimetallic transition metal surfaces[J]. Phys. Chem. C, 2012, 116(22): 11980-11986.
doi: 10.1021/jp209506d URL

[21] Yu X F, Wang D S, Peng Q, Li Y D. High performance electrocatalyst: Pt-Cu hollow nanocrystals[J]. Chem. Com-mun., 2011, 47(28): 8094-8096.

[22] Zhang J T, Ma J Z, Wan Y, Jiang J W, Zhao X S. Dendritic Pt-Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation[J]. Mater. Chem. Phys., 2012, 132(2): 244-247.
doi: 10.1016/j.matchemphys.2011.12.024 URL

[23] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z, Sun K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes[J]. Angew. Chem. Int. Ed., 2009, 48(23): 4217-4221.
doi: 10.1002/anie.v48:23 URL

[24] Yin A X, Min X Q, Zhu W, Liu W C, Zhang Y W, Yan C H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity[J]. J. Chem. Eur., 2012, 18(3): 777-782.
doi: 10.1002/chem.v18.3 URL

[25] Liao Y, Yu G, Yu Z, Guo T T, Chang F F, Zhong C J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction[J]. Phys. Chem. C, 2016, 120(19): 10476-10484.
doi: 10.1021/acs.jpcc.6b02630 URL

[26] Luo S P, Shen P K. Concave platinum-copper octopod nanoframes bounded with multiple high index facets for efficient electrooxidation catalysis[J]. ACS. Nano, 2017, 11(12): 11946-11953.
doi: 10.1021/acsnano.6b04458 URL

[27] Li X L, Zhou Y S, Du Y Y, Xu J, Wang W C, Chen Z D, Cao J Y. PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation[J]. Int. J. Hydrogen. Energy, 2019, 44(33): 18050-18057.
doi: 10.1016/j.ijhydene.2019.05.072 URL

[28] Lu L F, Chen S T, Thota S, Wang X D, Wang Y C, Zou S H, Fan J, Zhao J. Composition controllable synjournal of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction[J]. J. Phys. Chem. C, 2017, 121(36): 19796-19806.
doi: 10.1021/acs.jpcc.7b05629 URL

[29] Chen G J, Shan H Q, Li Y, Bao H W, Hu T W, Zhang L, Liu S, Ma F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks[J]. J. Mater. Chem. A, 2020, 8(20): 10337-10345.
doi: 10.1039/D0TA01549K URL

[30] Liu C H, Zhang L L, Sun L, Wang W C, Chen Z D. Enhanced electrocatalytic activity of PtCu bimetallic nanoparticles on CeO2/carbon nanotubes for methanol electro-oxidation[J]. Int. J. Hydrogen. Energy, 2020, 45(15): 8558-8567.
doi: 10.1016/j.ijhydene.2020.01.063 URL

[31] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys. Con-dens. Matter, 2002, 14(11): 2717-2744.

[32] Perdew J P, Burke K, Yue W. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys. Rev. B, 1996, 54(23): 16533-16539.
pmid: 9985776

[33] Hammer B, Hansen L B, Nörskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals[J]. Phys. Rev. B, 1999, 59(11): 7413-7421.
doi: 10.1103/PhysRevB.59.7413 URL

[34] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
doi: 10.1103/PhysRevB.13.5188 URL

[35] Peng X L, Zhao Y C, Chen D H, Fan Y F, Wang X, Wang W L, Tian J N. One-pot synjournal of reduced oxide graphene supported PtCu catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction[J]. Electrochim. Acta, 2014, 136: 292-300.
doi: 10.1016/j.electacta.2014.05.110 URL

[36] Zhao R P, Fu G T, Chen Z J, Tang Y W, Wang Y, Huang S M. A novel strategy for the synjournal of hollow Pt-Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation[J]. Cryst. Eng. Comm., 2019, 21(12): 1903-1909.
doi: 10.1039/C9CE00039A URL

[37] Xu Z, Zhang H M, Liu S S, Zhang B S, Zhong H X, Su D S. Facile synjournal of supported Pt-Cu nanoparticles with surface enriched Pt as highly active cathode catalyst for proton exchange membrane fuel cells[J]. Int. J. Hydrogen. Energy, 2012, 37(23): 17978-17983.
doi: 10.1016/j.ijhydene.2012.09.050 URL

[38] Fu S F, Zhu C Z, Song J H, Engelhard M H, Xia H B, Du D, Lin Y H. Kinetically controlled synjournal of Pt-Based one-dimensional hierarchically porous nanostructures with large mesopores as highly efficient ORR catalysts[J]. ACS Appl. Mater. Interfaces, 2016, 8: 35213-35218.
doi: 10.1021/acsami.6b11537 URL

[39] Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. J. Power. Sources, 2002, 105(1): 13-19.
doi: 10.1016/S0378-7753(01)00921-1 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.