Corresponding Author

Guang-Ming Wen(wgm@sxu.edu.cn)


Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and migrate to the electrode surface and electrolyte to generate photocurrent or photovoltage. When the target analyte is added, it will interact with its recognition molecule, and affect the separation or migration process of the charge, thereby, causing a change in the photocurrent. Metal organic framework (MOF) is a material composed of metal ions and organic linking groups. They have adjustable porosity, functional surface and massive conjugate back bone. These unique characteristics of MOF have been extensively explored in various fields. Zr-MOFs were synthesized use 4-carboxyphenylporphyrin (TCPP) as the ligand, and metal zirconium (Zr) as the coordination metal. Using Zr-MOFs as the photoelectrically active material, a cathode photoelectrochemical sensor was constructed to detect homocysteine (Hcy). A three-electrode system, consisting of Zr-MOFs/FTO electrode, Pt electrode and Ag/AgCl electrode, was inserted into 0.01 mol·L-1 HEPES solution to prepare the sensor. An aqueous solution of homocysteine was added to the electrolyte, allowing it to stand for 5 min. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the reaction process and the electron transfer process between optoelectronic materials. When the Xe lamp with λ > 420 nm is used to irradiate Zr-MOFs, electrons (e -) in the valence band transfer to the conduction band, and holes (h+) are generated in the valence band, thereby, generating light current. The addition of homocysteine will hinder the transfer of electrons, causing the cathode photocurrent to be decreased. The prepared sensor had good linear responses in the ranges of 10 ~ 100 nmol·L-1 and 100 ~ 1000 nmol·L-1, and the detection limit was 2.17 nmol·L-1. The sensor also exhibited good stability and selectivity. The prepared cathode photoelectric sensor could sensitively and efficiently detect homocysteine in milk. The studied high-performance photoelectric active materials and chemical sensing platforms may be important for the design of other chemical sensing platforms and the development of PEC applications.

Graphical Abstract


cathodic photocurrent, Zr-MOFs, homocysteine

Publication Date


Online Available Date


Revised Date


Received Date



[1] Shu J, Qiu Z L, Zhou Q, Lin Y X, Lu M H, Tang D P. Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter[J]. Anal. Chem., 2016, 88(5): 2958-2966.
doi: 10.1021/acs.analchem.6b00262 URL

[2] Li Y, Zhang N, Zhao W W, Jiang D C, Xu J J, Chen H Y. Polymer dots for photoelectrochemical bioanalysis[J]. Anal. Chem., 2017, 89(9): 4945-4950.
doi: 10.1021/acs.analchem.7b00162 URL

[3] Zhao C Q, Ding S N, Xu J J, Chen H Y. ZnAgInS quantum dot-decorated BiOI heterostructure for cathodic photoelectrochemical bioanalysis of glucose oxidase[J]. ACS Appl. Nano Mater., 2020, 3(11): 11489-11496.
doi: 10.1021/acsanm.0c02592 URL

[4] Yan K, Liu Y, Yang Y H, Zhang J D. A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline[J]. Anal. Chem., 2015, 87(24): 12215-12220.
doi: 10.1021/acs.analchem.5b03139 URL

[5] Wu S, Song H L, Song J, He C, Ni J, Zhao Y Q, Wang X Y. Development of triphenylamine functional dye for selective photoelectrochemical sensing of cysteine[J]. Anal. Chem., 2014, 86(12): 5922-5928.
doi: 10.1021/ac500790u URL

[6] Li Z P, Dong W X, Du X Y, Wen G M, Fan X J. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+[J]. Microchem. J., 2020, 152: 104259.
doi: 10.1016/j.microc.2019.104259 URL

[7] Yu S Y, Zhang L, Zhu L B, Gao Y, Fan G C, Han D M, Chen G X, Zhao W W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing[J]. Coord. Chem. Rev., 2019, 393: 9-20.
doi: 10.1016/j.ccr.2019.05.008 URL

[8] Gao C M, Xue J, Zhang L, Cui K, Li H, Yu J H. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NbO8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation[J]. Anal. Chem., 2018, 90(24): 14116-14120.
doi: 10.1021/acs.analchem.8b04662 URL

[9] Hao Q, Wang P, Ma X Y, Su M Q, Lei J P, Ju H X. Charge recombination suppression-based photoelectrochemical strategy for detection of dopamine[J]. Electrochem. Commun., 2012, 21: 39-41.
doi: 10.1016/j.elecom.2012.05.009 URL

[10] Cooper D R, Suffern D, Carlini L, Clarke S J, Parbhoo R, Bradforth S E, Nadeau J L. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates[J]. Phys. Chem. Chem. Phys., 2009, 11(21): 4298-4310.
doi: 10.1039/b820602c URL

[11] Deria P, Gómez-Gualdrón D A, Hod I, Snurr R MQ, Hupp J T, Farha O K. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs[J]. J. Am. Chem. Soc., 2016, 138(43): 14449-14457.
doi: 10.1021/jacs.6b09113 URL

[12] Chen J, Chen H Y, Wang T S, Li J F, Wang J, Lu X Q. Copper ion fluorescent probe based on Zr-MOFs composite material[J]. Anal. Chem., 2019, 91(7): 4331-4336.
doi: 10.1021/acs.analchem.8b03924 URL

[13] Wang J H, Li M N, Yan S, Zhang Y, Liang C C, Zhang X M, Zhang Y B. Modulator-induced Zr-MOFs diversification and investigation of their properties in gas sorption and Fe3+ ion sensing[J]. Inorg. Chem., 2020, 59(5): 2961-2968.
doi: 10.1021/acs.inorgchem.9b03316 URL

[14] Gao Y, Wu J F, Wang J Q, Fan Y X, Zhang S Y, Dai W. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline[J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 11036-11044.
doi: 10.1021/acsami.9b23314 URL

[15] Xu G L, Zhang H B, Wei J, Zhang H X, Wu X, Li Y, Li C S, Zhang J, Ye J H. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction[J]. ACS Nano, 2018, 12(6): 5333-5340.
doi: 10.1021/acsnano.8b00110 URL

[16] Zhang G Y, Zhuang Y H, Shan D, Su G F, Cosnier S, Zhang X J. Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection[J]. Anal. Chem., 2016, 88(22): 11207-11212.
doi: 10.1021/acs.analchem.6b03484 URL

[17] Zhu Y H, Xu Z W, Yan K, Zhao H B, Zhang J D. One-step synjournal of CuO-Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine[J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40452-40460.
doi: 10.1021/acsami.7b13020 URL

[18] Michael J, MacCoss N K. Measurement of homocysteine concentrations and stable isotope tracer enrichments in human plasma[J]. Anal. Chem., 1999, 71(20): 4527-4533.
pmid: 10546531

[19] Wang Y Q, Wang W, Wang S S, Chu W J, Wei T, Tao H J, Zhang C X, Sun Y M. Enhanced photoelectrochemical detection of L-cysteine based on the ultrathin polythiophene layer sensitized anatase TiO2 on F-doped tin oxide substrates[J]. Sensor. Actuat. B - Chem., 2016, 232: 448-453.
doi: 10.1016/j.snb.2016.03.161 URL

[20] Hubmacher D, Sabatier L, Annis D S, Mosher D F, Reinhardt D P. Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction[J]. Biochem., 2011, 50(23): 5322-5332.

[21] Ozoemena K, Westbroek P, Nyokong T. Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards L-cysteine detection[J]. Electrochem. Commun., 2001, 3(9): 529-534.
doi: 10.1016/S1388-2481(01)00213-2 URL

[22] Magdalena S, Anthony A M, Agata C, Maria H. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon[J]. Anal. Chem., 2012, 84(11): 4970-4978.
doi: 10.1021/ac300632u pmid: 22524145

[23] Gates A T, Fakayode S O, Lowry M, Ganea G M, Murugeshu A, Robinson J W, Strongin R M, Warner I M. Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification[J]. Langmuir, 2008, 24(8): 4107-4113.
doi: 10.1021/la7033142 URL

[24] Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging[J]. J. Am. Chem. Soc., 2007, 129(34): 10322-10323.
pmid: 17672463

[25] Chen H L, Zhao Q, Wu Y B, Li F Y, Yang H, Yi T, Huang C H. Selective phosphorescence chemosensor for homocysteine based on an iridium(III) complex[J]. Inorg. Chem., 2007, 46(26): 11075-11081.
doi: 10.1021/ic7010887 URL

[26] Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10307-10310.
doi: 10.1002/anie.201204475 URL

[27] Bonnett B L, Smith E D, Cai M, Haag J V, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765-15773.
doi: 10.1021/acsami.0c04349 URL

[28] Carrasco S, Sanz-Marco A, Matute B M. Fast and robust synjournal of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2[J]. Organo-metallics, 2019, 38(18): 3429-3435.

[29] Tan W L, Wei T, Huo J, Loubidi M, Liu T T, Liang Y, Deng L B. Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acidstable catalytic performance[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 36782-36788.
doi: 10.1021/acsami.9b13080 URL

[30] Chen S, Tian J N, Jiang Y X, Zhao Y C, Zhang J N, Zhao S L. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system[J]. Anal. Chim. Acta, 2013, 787: 181-188.
doi: 10.1016/j.aca.2013.05.048 URL

[31] Beitollahi H, Zaimbashi R, Mahani M T, Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles[J]. Bioelectrochemistry, 2020, 134: 107497.
doi: S1567-5394(18)30608-X pmid: 32222669

[32] Tang L J, Shi J Z, Huang Z L, Yan X M, Zhang Q, Zhong K L, Hou S H, Bian Y J. An ESIPT-based fluorescent probe for selective detection of homocysteine and its application in live-cell imaging[J]. Tetrahedron Lett., 2016, 57(47): 5227-5231.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.