Corresponding Author

Zhu Fu-Liang(chzfl@126.com)


In recent years, lithium-sulfur (Li-S) batteries have been considered as a promising candidate for the next generation of energy storage system due to their ultrahigh theoretical capacity (1675 mAh·g-1) and energy density (2600 Wh·kg-1). However, the practical application of Li-S batteries is seriously limited by their insulating nature of sulfur, the shuttle effect of polysulfides (LiPSs), and volume expansion during charging and discharging. To overcome those disadvantages, one of the commonly methods is to infiltrate sulfur into porous conductive carbon framework, such as porous carbon, hollow carbon spheres, graphene, carbon nanotubes and some composites of the above structures to achieve the purpose of physically limiting the shuttle effect of polysulfides, thereby improving the performance of Li-S batteries. However, due to the nonpolarity of traditional carbon materials, the interaction with polar polysulfides is very weak, which cannot effectively inhibit the shuttle effect of polysulfides. Previous studies have shown that introducing heteroatom (N, S, P, B, etc.) doping into carbon matrix is a feasible method to adjust the nonpolarity of carbon materials. It is reported that the introduction of N atoms is conducive to improving the electrochemical activity. The Li-N bond formed by the interaction between N and Li+ can anchor polysulfides, effectively inhibit the dissolution of polysulfides and improve the utilization rate of sulfur. The introduction of nitrogen and sulfur heteroatoms can increase polar sites and active centers, thus, enhancing the adsorption capacity of carbon materials for polysulfides and capturing polysulfides. Therefore, ionic liquids are selected as nitrogen and sulfur sources to improve the polarity of carbon materials. In this paper, nitrogen and sulfur co-doped porous carbon (NSPC) was synthesized by using glucose as carbon source, KCl and ZnCl2 as templates, KOH as activator and ionic liquid as heteroatom source. XPS and adsorption experiments show that nitrogen and sulfur heteroatoms had been successfully introduced into NSPC, which improved the adsorption capacity of carbon materials for polysulfides, effectively alleviated the shuttle effect of polysulfides. The higher specific surface area (1290.67 m2·g-1) could help to improve the sulfur loading. After loading 70.1wt.% sulfur into NSPC (S@NSPC) and tested as a cathode material of Li-S battery, the initial discharge capacity was 1229.2 mAh·g-1 at 167.5 mA·g-1, higher than the 861.6 mAh·g-1 of S@PC, and the capacity remained at 328.1 mAh·g-1 after 500 cycles. When the current density returned to 167.5 mA·g-1, the reversible capacity almost went back to its initial value, which was 80% of its initial value. The good performance was mainly ascribed to both the porous structure and N, S co-dopants, which provided physical blocks and chemical affinity, respectively, for the efficient immobilization of intermediate lithium polysulfides. The results would provide an effective example in the surface chemistry and sulfur host materials design for high performance Li-S batteries.

Graphical Abstract


lithium-sulfur batteries, porous carbon, heteroatom doping

Publication Date


Online Available Date


Revised Date


Received Date



[1] Rehman S, Gu X X, Khan K, Mahmood N, Yang W L, Huang X X, Guo S, Hou Y L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2016, 6(12): 1502518.
doi: 10.1002/aenm.201502518 URL

[2] Yang W W, Xiao J W, Ma Y, Cui S Q, Zhang P, Zhai P B, Meng L J, Wang X G, Wei Y, Du Z G, Li B X, Sun Z B, Yang S B, Zhang Q F, Gong Y J. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(7): 1803137.
doi: 10.1002/aenm.v9.7 URL

[3] Yu M P, Ma J S, Xie M, Song H Q, Tian F Y, Xu S S, Zhou Y, Li B, Wu D, Qiu H, Wang R M. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(11): 1602347.
doi: 10.1002/aenm.v7.11 URL

[4] Chen S X, Luo J H, Li N Y, Han X X, Wang J, Deng Q, Zeng Z L, Deng S G. Multifunctional LDH/Co9S8 hetero-structure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan[J]. Energy Stor. Mater., 2020, 30: 187-195.

[5] Guo D Y, Wei H F, Chen X A, Liu M L, Ding F, Yang Z, Yang Y, Wang S, Yang K Q, Huang S M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(34): 18193-18206
doi: 10.1039/C7TA04728B URL

[6] Cheng X B, Huang J Q, Zhang Q, Peng H J, Zhao M Q, Wei F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries[J]. Nano Energy, 2014, 4: 65-72.
doi: 10.1016/j.nanoen.2013.12.013 URL

[7] Chen M F, Jiang S X, Huang C, Wang X Y, Cai S Y, Xiang K X, Zhang Y P, Xue J X. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(8): 1803-1812.
doi: 10.1002/cssc.201700050 URL

[8] Gan R Y, Yang N, Dong Q, Fu N, Wu R, Li C P, Liao Q, Li J, Wei Z D. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability[J]. J. Mater. Chem. A, 2020, 8(15): 7253-7260.
doi: 10.1039/D0TA02374D URL

[9] Chae C, Kim J, Kim J Y, Ji S, Lee S S, Kang Y, Choi Y, Suk J, Jeong S. Room-temperature, ambient-pressure chemical synjournal of amine-functionalized hierarchical carbon-sulfur composites for lithium-sulfur battery cathodes[J]. ACS Appl. Mater. Inter., 2018, 10(5): 4767-4775.
doi: 10.1021/acsami.7b19181 URL

[10] ZhangY J, Liu X L, Wu L, Dong W D, Xia F J, Chen L D, Zhou N, Xia L X, Hu Z Y, Liu J, Mohamed H S H, Yu Li, Zhao Y, Chen Li H, Su B L. Flexible hierarchically PANI/MnO2 porous network with fast channels and extraordinary chemical process for stable fastcharging lithium-sulfur battery[J]. J. Mater. Chem. A, 2020, 8: 2741-2751.
doi: 10.1039/C9TA12135H URL

[11] Abualela S M, Lü X X, Hu Y, Abd-Alla, M D. NiO nano-sheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery[J]. Mater. Lett., 2020, 268: 127622.
doi: 10.1016/j.matlet.2020.127622 URL

[12] Yu F Q, Zhou H, Shen Q. Modification of cobalt-containing MOF-derived mesoporous carbon as an effective sulfur-loading host for rechargeable lithium-sulfur batteries[J]. J. Alloys Compd., 2019, 772: 843-851.
doi: 10.1016/j.jallcom.2018.09.103 URL

[13] Chen T, Cheng B R, Zhu G Y, Chen R P, Hu Y, Ma L B, Lü H L, Wang Y R, Liang J, Tie Z X, Jin Z, Liu J. Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries[J]. Nano Lett., 2016, 17(1): 437-444.
doi: 10.1021/acs.nanolett.6b04433 URL

[14] Hu K, Wen J, Yan W Q, Zhu Y S, Zhang Y, Yu N F, Wu Y P. A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li-S batteries[J]. Sustain. Energy Fuels, 2020, 4(8): 4264-4272.
doi: 10.1039/D0SE00620C URL

[15] Wu K(吴凯). Preparation and process optimization of cathode materials for lithium-sulfur batteries[J]. J. Electrochem.(电化学), 2020, 26(6): 825-833.

[16] Cui Z, He S A, Liu Q, Zou R J. Multifunctional NiCo2O4 nanosheet-assembled hollow nanoflowers as a highly eff-icient sulfur host for lithium-sulfur batteries[J]. Dalton Trans., 2020, 49(20): 6876-6883.
doi: 10.1039/C9DT04936C URL

[17] Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. Iron single atom catalyst anchored on nitrogen-rich MOF derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3421-3430.
doi: 10.1039/C9TA11680J URL

[18] Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
doi: 10.1021/jacs.8b12973 URL

[19] Li Z, Yan J, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. A Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303.
doi: 10.1021/nn503220h URL

[20] Liu Y Z, Li G R, Chen Z W, Peng X S. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery[J]. J. Mater. Chem. A, 2017, 5(20): 9775-9784.
doi: 10.1039/C7TA01526G URL

[21] Lei T Y, Chen W, Huang J W, Yan C Y, Sun H X, Wang C, Zhang W L, Li Y R, Xiong J. Multi-Functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(4): 1601843.
doi: 10.1002/aenm.201601843 URL

[22] Xu W, Pang H M, Zhou H L, Jian Z X, Hu R M, Xing Y L, Zhang S C. Lychee-like TiO2@TiN dual-function com-posite material for lithium-sulfur batteries[J]. RSC Adv., 2020, 10(5): 2670-2676.
doi: 10.1039/C9RA09534A URL

[23] Feng X H, Wang Q, Li R R, Li H. CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries[J]. Appl. Surf. Sci., 2019, 478: 341-346.
doi: 10.1016/j.apsusc.2019.01.145 URL

[24] Shi J N, Kang Q, Mi Y, Xiao Q Q. Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li-S batteries[J]. Electrochim. Acta, 2019, 19: 31720-31727.

[25] Liu J T, Xiao S H, Zhang Z Y, Chen Y, Xiang Y, Liu X Q, Chen J S, Chen P. Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery[J]. Nanoscale, 2020, 12(8): 5114-5124.
doi: 10.1039/C9NR10419D URL

[26] Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H R, Han W. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries[J]. Adv. Energy Mater., 2020, 10(19): 1904273.
doi: 10.1002/aenm.v10.19 URL

[27] Huang M, Yang J Y, Xi B J, Mi K, Feng Z Y, Liu J, Feng J K, Qian Y T, Xiong S L. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid[J]. Sci. China Mater., 2018, 62(4): 455-464.
doi: 10.1007/s40843-018-9331-x URL

[28] Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Manipulating the redox kinetics of Li-S chemistry by porous hollow cobalt - B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries[J]. Carbon, 2019, 149: 564-571.
doi: 10.1016/j.carbon.2019.04.022 URL

[29] Li J R, Zhou J, Wang T, Chen X, Zhang Y X, Wan Q, Zhu J. Covalent sulfur embedding in inherent N,P co-doped biological carbon for ultrastable and high rate lithium-sulfur batteries[J]. Nanoscale, 2020, 12(16): 8991-8996.
doi: 10.1039/D0NR01103G URL

[30] Hu C J, Chang Y N, Chen R D, Yang J J, Xie T H, Chang Z, Zhang G X, Liu W, Sun X M. Polyvinylchloride-derived N, S co-doped carbon as an efficient sulfur host for high-performance Li-S batteries[J]. RSC Adv., 2018, 8(66): 37811-37816.
doi: 10.1039/C8RA07885H URL

[31] Jiao S, Ding T Y, Zhai R, Wu Y P, Chen S, Wei W. Effective accommodation and conversion of polysulfides using organic-inorganic hybrid frameworks for long-life lithium-sulfur batteries[J]. Nanoscale, 2020, 12(25): 13377-13387.
doi: 10.1039/d0nr01239d pmid: 32347276

[32] Gu W T, Sevilla M, Magasinski A, Fuertes A B, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy Environ. Sci., 2013, 6(8): 2465-2476.
doi: 10.1039/c3ee41182f URL

[33] Du M Q, Meng Y S, Duan C Y, Wang C, Zhu F L, Zhang Y. Nitrogen-sulfur co-doped porous carbon prepared using ionic liquids as a dual heteroatom source and their application for Li-ion batteries[J]. J. Mater. Sci. - Mater. Electron., 2018, 29(21): 18179-18186.
doi: 10.1007/s10854-018-9930-2 URL

[34] Zhang H, Zhao W Q, Zou M C, Wang Y S, Chen Y J, Xu L, Wu H S, Cao A Y. 3D, Mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(19): 1800013.
doi: 10.1002/aenm.v8.19 URL

[35] Zeng L C, Pan F S, Li W H, Jiang Y, Zhong X W, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode[J]. Nanoscale, 2014, 6(16): 9579-9607.
doi: 10.1039/C4NR02498B URL

[36] Zhang Q F, Qiao Z S, Cao X R, Qu B H, Yuan J, Fan T E, Zheng H F, Cui J Q, Wu S Q, Xie Q S, Peng D L. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries[J]. Nanoscale Horiz., 2020, 5(4): 720-729.
doi: 10.1039/C9NH00663J URL

[37] Jin J, Cai W L, Cai J S, Shao Y L, Song Y Z, Xia Z, Zhang Q, Sun J Y. MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3027-3034.
doi: 10.1039/C9TA13046B URL

[38] Meng Q H(孟全华), Deng W W(邓雯雯), Li C M(李长明). Facile synjournal of nitrogen-doped graphene-like active carbon materials for high performance lithium-sulfur battery[J]. J. Electrochem(电化学), 2020, 26(5): 740-749.

[39] Liu J P, Li Z, Jia B B, Zhu J C, Zhu W L, Li J P, Pan H, Zheng B W, Chen L Y, Pezzotti G, Zhu J L. A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(13): 6303-6310.
doi: 10.1039/C9TA14240A URL

[40] Li S Q, Mou T, Ren G F, Warzywoda J, Wang B, Fan Z Y. Confining sulfur species in cathodes of lithium-sulfur batteries: insight into nonpolar and polar matrix surfaces[J]. ACS Energy Lett., 2016, 1(2): 481-489.
doi: 10.1021/acsenergylett.6b00182 URL

[41] Lee J Y, Park G D, Choia J H, Kang Y C. Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries[J]. Nanoscale, 2020, 12(3): 2142-2153.
doi: 10.1039/C9NR09807K URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.