Abstract
The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum particle structure in the Pt-rich layer near the proton exchange membrane could promote the ORR rate, while the Pt-poor layer near the gas diffusion layer had higher porosity and average pore size, which is beneficial to the reaction gas transmission and diffusion. When the platinum loading ratio of the rich to poor platinum layer was 1:2, the best single cell performance was achieved. The current density at 0.6 V reached 1.05A·cm-2, and the maximum power density was 0.69 W·cm-2. Compared with the single-layer structure, the peak power density was increased by 21%. When growing Pt-NWs on the Pt-NPs base layer, the presence of Pt particles promoted the reduction of platinum precursors and provided deposition sites for newly formed Pt atoms, and the grown Pt-NWs had a more uniform distribution as well as a denser pile structure. The current density of the optimized Pt-NWs catalytic layer structure at 0.6 V increased by 21%. The MEA fabricated by double-catalytic layer method had a higher catalyst utilization rate and a guiding significance for the optimization of the cathode catalytic layer structure. The high activity shown by the platinum nanowires provides a new idea for the preparation of efficient catalysts.
Graphical Abstract
Keywords
proton exchange membrane fuel cell, double-layer catalytic layer, membrane electrode assembly, cathode, platinum nanowires
Publication Date
2021-12-28
Online Available Date
2021-01-11
Revised Date
2020-12-29
Received Date
2020-12-08
Recommended Citation
Rui-Qing Wang, Sheng Sui.
Structure Analysis of PEMFC Cathode Catalyst Layer[J]. Journal of Electrochemistry,
2021
,
27(6): 595-604.
DOI: 10.13208/j.electrochem.201208
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss6/9
References
[1]
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475
URL
[2]
Wang G J, Yu Y, Liu H, Gong C L, Wen S, Wang X H, Tu Z K. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review[J]. Fuel Process. Technol., 2018, 179: 203-228.
doi: 10.1016/j.fuproc.2018.06.013
URL
[3] Bao B(鲍冰), Liu F(刘锋), Duan X(段骁). Review on progress of membrane electrode assembly in proton-exchange membrane fuel cells[J]. Precious Me.(贵金属), 2019, 40(2): 73-82.
[4]
Prasanna M, Cho E A, Lim T H, Oh I H. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells[J]. Electrochim. Acta, 2008, 53(16): 5434-5441.
doi: 10.1016/j.electacta.2008.02.068
URL
[5]
Alaefour I E, Li X G, Hamdullahpur F. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells[J]. Appl. Energy, 2019, 255: 113802.
doi: 10.1016/j.apenergy.2019.113802
URL
[6]
Hwang D S, Park C H, Yi S C, Lee Y M. Optimal catalyst layer structure of polymer electrolyte membrane fuel cell[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9876-9885.
doi: 10.1016/j.ijhydene.2011.05.073
URL
[7] Gao Y Y(高燕燕), Hou M(侯明), Jiang Y Y(姜永燚), Liang D(梁栋), Ai J(艾军), Zheng L M(郑利民). Chemical stability investigations of catalyst layer in PEMFC[J]. J. Electrochem.(电化学), 2018, 24(3): 227-234.
[8]
Rao R M, Rengaswamy R. Optimization study of an agglomerate model for platinum reduction and performance in PEM fuel cell cathode[J]. Chem. Eng. Res. Des., 2006, 84(10): 952-964.
doi: 10.1205/cherd06018
URL
[9]
Secanell M, Karan K, Suleman A, Djilali N. Multi-variable optimization of PEMFC cathodes using an agglomerate model[J]. Electrochim. Acta, 2007, 52(22): 6318-6337.
doi: 10.1016/j.electacta.2007.04.028
URL
[10] Du C Y(杜春雨), Cheng X Q(程新群), Yin G P(尹鸽平). Influence of structural parameters on ordered cathode catalyst layer in proton exchange membrane fuel cells[J]. CIESC Journal(化工学报), 2007, 58(1): 212-216.
[11]
Zheng J S, Dai N N, Zhu S Y, Gao Y, Ye L C, Ma J X, Zheng J P. Membrane electrode assembly based on buckypaper with gradient distribution of platinum, proton conductor and electrode porosity[J]. J. Alloy. Compd., 2018, 769: 471-477.
doi: 10.1016/j.jallcom.2018.07.271
URL
[12]
Ye L C, Gao Y, Zhu S Y, Zheng J S, Li P, Zheng J P. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7241-7245.
doi: 10.1016/j.ijhydene.2016.11.002
URL
[13] Shu Q Z(舒清柱), Ding W Y(丁伟元), Zhao H(赵红). Study of a novel gas diffusion layer based on carbon fiber/carbon nanotubes[J]. J. Dalian Jiaotong Univ.(大连交通大学学报), 2020, 41(5): 71-77.
[14]
Shahgaldi S, Ozden A, Li X G, Hamdullahpur F. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells[J]. Energ. Convers. Manage., 2018, 171: 1476-1486.
doi: 10.1016/j.enconman.2018.06.078
URL
[15]
Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chem. Rev., 2014, 114(15): 7610-7630.
doi: 10.1021/cr400544s
URL
[16] Deng R, Xia Z, Sun R, Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 29(4): 33-39.
[17]
Lu Y, Du S, Steinberger-Wilckens R. Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells[J]. Appl. Catal. B-Environ., 2015, 164: 389-395.
doi: 10.1016/j.apcatb.2014.09.040
URL
[18]
Li B, Yan Z Y, Higgins D C, Yang D J, Chen Z W, Ma J X. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells[J]. J. Power Sources, 2014, 262: 488-493.
doi: 10.1016/j.jpowsour.2014.04.004
URL
[19]
Meng H, Xie F Y, Chen J, Sun S H, Shen P K. Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation[J]. Nanoscale, 2011, 3(12): 5041-5048.
doi: 10.1039/c1nr10947b
pmid: 22048635
[20]
Sun S H, Yang D Q, Villers D, Zhang G X, Sacher E, Dodelet J P. Template- and surfactant-free room temperature synjournal of self-assembled 3D Pt nanoflowers from single-crystal nanowires[J]. Adv. Mater., 2008, 20(3): 571-574.
doi: 10.1002/(ISSN)1521-4095
URL
[21]
Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y, Zhu E B, Yu T, Jia Q Y, Guo J H, Zhang L, Goddard W A, Huang Y, Duan X F. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419.
doi: 10.1126/science.aaf9050
URL
[22]
Yao X Y, Su K H, Sui S, Mao L W, He A, Zhang J L, Du S F. A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs)[J]. Int. J. Hydrogen Energy, 2013, 38(28): 12374-12378.
doi: 10.1016/j.ijhydene.2013.07.037
URL
[23]
Wang C, Cheng X J, Lu J B, Shen S Y, Yan X H, Yin J W, Wei G H, Zhang J L. The Experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2017, 8(23): 5848-5852.
doi: 10.1021/acs.jpclett.7b02580
URL
[24] Randall C R, DeCaluwe S C. Physically based modeling of PEMFC cathode catalyst layers: effective microstructure and ionomer structure-property relationship impacts[J]. J. Electrochem. En. Conv. Stor., 2020, 17(4): 1-14.
[25]
Mohanta P K, Ripa M S, Regnet F, Joerissen L. Impact of membrane types and catalyst layers composition on performance of polymer electrolyte membrane fuel cells[J]. Chemistryopen, 2020, 9(5): 607-615.
doi: 10.1002/open.v9.5
URL
[26]
Huang C P, Odetola C B, Rodgers M. Nanoparticle seeded pulse electrodeposition for preparing high performance Pt/C electrocatalysts[J]. Appl. Catal. A - Gen., 2015, 499: 55-65.
doi: 10.1016/j.apcata.2015.03.043
URL
Included in
Analytical Chemistry Commons, Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons