Corresponding Author

Li-Gang Feng(ligang.feng@yzu.edu.cn)


Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased attention because of its multifunctional active sites, tunable structure and composition, as well as unique physical and chemical properties and efficient multi-composition synergistic effect. Some advances have been made for this catalyst system recently. In the current review, the research progresses of transition metal phosphides (TMPs) in the assisted electrooxidation of methanol including the catalysts fabrication and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMPs has been firstly presented and the catalyst systems based on the different metal centers of TMPs are then mainly discussed. It is concluded that the TMPs can greatly promote methanol oxidation through the electronic effect and the oxyphilic property based on the bifunctional catalytic mechanism. The problems and challenges in methanol fuel oxidation by using TMPs are also described at the end with the attention being paid to the precise catalyst design. The catalytic mechanism probing and application of the fuel cells device are proposed. The current effort might be helpful to the community for novel catalyst system design and fabrication.

Graphical Abstract


transition metal phosphide, methanol oxidation reaction, promoter, electrocatalysis

Publication Date


Online Available Date


Revised Date


Received Date



[1] Munjewar S S, Thombre S B, Mallick R K. Approaches to overcome the barrier issues of passive direct methanol fuel cell-Review[J]. Renew. Sust. Energ. Rev., 2017, 67: 1087-1104.
doi: 10.1016/j.rser.2016.09.002 URL

[2] Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. J. Phys. Chem. C, 2008, 112(39): 15595-15601.
doi: 10.1021/jp805374p URL

[3] Cai Z C, Kamiko M, Yamada I, Yagi S. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes[J]. ACS Appl. Nano Mater., 2021, 4(2): 1445-1454.
doi: 10.1021/acsanm.0c02977 URL

[4] Abdelkareem M A, Lootah M A, Sayed E T, Wilberforce T, Alawadhi H, Yousef B A A, Olabi A G. Fuel cells for carbon capture applications[J]. Sci. Total Environ., 2021, 769: 144243.
doi: 10.1016/j.scitotenv.2020.144243 URL

[5] Casalegno A, Bresciani F, Zago M, Marchesi R. Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests[J]. J. Power Sources, 2014, 249: 103-109.
doi: 10.1016/j.jpowsour.2013.10.032 URL

[6] Zhong C J, Luo J, Njoki P N, Mott D, Wanjala B, Loukra-kpam R, Lim S, Wang L Y, Fang B, Xu Z C. Fuel cell technology: nano-engineered multimetallic catalysts[J]. Energy Environ. Sci., 2008, 1(4): 454-466.
doi: 10.1039/b810734n URL

[7] Xia Z X, Zhang X M, Sun H, Wang S L, Sun G Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048.
doi: 10.1016/j.nanoen.2019.104048 URL

[8] Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski R E, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells[J]. ACS Catal., 2019, 9(5): 3764-3772.
doi: 10.1021/acscatal.8b04883 URL

[9] Li H Y, Wu X S, Tao X L, Lu Y, Wang Y W. Direct synjournal of ultrathin Pt nanowire arrays as catalysts for methanol oxidation[J]. Small, 2020, 16(33): 2001135.
doi: 10.1002/smll.v16.33 URL

[10] Zhang Y Q, Shi Y L, Chen R, Tao L, Xie C, Liu D D, Yan D F, Wang S Y. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. J. Mater. Chem. A, 2018, 6(45): 23028-23033.
doi: 10.1039/C8TA08636B URL

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu G C, Lee J K, Wang X D. A study on fuel additive of methanol for room temperature direct methanol fuel cells[J]. Energy Convers. Manage., 2018, 168: 270-275.
doi: 10.1016/j.enconman.2018.05.006 URL

[12] Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N Y. Atomic carbon layers supported Pt nanoparticles for minimized CO Poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.
doi: 10.1002/smll.v15.38 URL

[13] Ramli Z A C, Kamarudin S K. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review[J]. Nano-scale Res. Lett., 2018, 13(1): 410.

[14] Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019, 11(4): 1238-1243.
doi: 10.1002/cctc.v11.4 URL

[15] Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23046-23050.
doi: 10.1021/acsami.0c06460 URL

[16] Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C, Ge C. Plasma-induced synjournal of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.
doi: 10.1016/j.apsusc.2016.12.095 URL

[17] Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33572-33582.
doi: 10.1021/acsami.6b09756 URL

[18] Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J C, Fan W B. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.
doi: 10.1021/acsami.0c08912 URL

[19] Wei D Y, Ma L, Gan M Y, Han S C, Shen J, Ding J J, Zhan W, Zhou C L, Zhong X J, Xie F. Pt-based catalyst decorated by bimetallic FeNi2P with outstanding CO tolerance and catalytic activity for methanol electrooxidation[J]. Int. J. Hydrogen Energy, 2020, 45(7): 4875-4886.
doi: 10.1016/j.ijhydene.2019.12.064 URL

[20] Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nano-scale, 2019, 11(40): 18866-18873.

[21] Liu D N, Lu W B, Wang K Y, Du G, Asiri A M, Lu Q, Sun X P。 Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology, 2016, 27(44): 44LT02.

[22] Cui X Z, Zhu Y, Hua Z L, Feng J W, Liu Z W, Chen L S, Shi J L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation[J]. Energ Environ Sci., 2015, 8(4): 1261-1266.
doi: 10.1039/C5EE00240K URL

[23] Jiang X F, Wang X B, Shen L M, Wu Q, Wang Y N, Ma Y W, Wang X Z, Hu Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nano-cages for methanol electrooxidation[J]. Chin. J. Catal., 2016, 37(7): 1149-1155.
doi: 10.1016/S1872-2067(15)61117-2 URL

[24] Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H. General synjournal of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale, 2014, 6(11): 5762-5769.
doi: 10.1039/C3NR06084E URL

[25] Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628.
doi: 10.1039/c4ee00100a URL

[26] Liu H, Yang D W, Bao Y F, Yu X, Feng L G. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. J. Power Sources, 2019, 434: 226754.
doi: 10.1016/j.jpowsour.2019.226754 URL

[27] Wang F L, Fang B, Yu X, Feng L G. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Appl. Mater. In-terfaces, 2019, 11(9): 9496-9503.

[28] Li R X, Ma Z Z, Zhang F, Meng H J, Wang M, Bao X Q, Tang B, Wang X G. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation[J]. Electrochim. Acta, 2016, 220: 193-204.
doi: 10.1016/j.electacta.2016.10.105 URL

[29] Chen S, Yang X, Tong X, Zhang F, Zou H, Qiao Y, Dong M, Wang J, Fan W. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.
doi: 10.1021/acsami.0c08912 URL

[30] Housmans T H M, Koper M T M. Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study[J]. J. Phys. Chem. B, 2003, 107(33): 8557-8567.
doi: 10.1021/jp034291k URL

[31] Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60(3): 275-283.
doi: 10.1016/S0022-0728(75)80262-2 URL

[32] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 10(8): 2654-2659.

[33] Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog. Phys., 1990, 53(10): 1253-1295.
doi: 10.1088/0034-4885/53/10/001 URL

[34] Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf. Sci., 1991, 38(2): 103-144.
doi: 10.1016/0079-6816(91)90007-Q URL

[35] Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016, 4(47): 18607-18613.
doi: 10.1039/C6TA07896F URL

[36] Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B, Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh D Y, Dunin-Borkowski R E, Kovnir K, Kolen’ko Y V. Interface engineering in nanostructured nickel phosphide catalyst for efficient and stable water oxidation[J]. ACS Catal., 2017, 7(8): 5450-5455.
doi: 10.1021/acscatal.7b01954 URL

[37] Chang J F, Feng L G, Liu C P, Xing W. Ni2P makes app-lication of the PtRu catalyst much stronger in direct meth-anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.
doi: 10.1002/cssc.201500357 URL

[38] Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Gra-phene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation[J]. RSC Adv., 2018, 8(15): 8228-8232.
doi: 10.1039/C7RA13303K URL

[39] Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G P, Gao Y Z, Song Y. The enhanced CO tolerance of platinum supported on FeP nanosheet for superior catalytic activity toward methanol oxidation[J]. Electrochim. Acta, 2017, 254: 36-43.
doi: 10.1016/j.electacta.2017.09.099 URL

[40] Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan K, Cabot A. Hierarchical CoP nanostructures on nickel foam as efficient bifunctional catalysts for water splitting[J]. ChemSusChem, 2021, 14(4): 1094-1102.
doi: 10.1002/cssc.v14.4 URL

[41] Ji L L, Wang J Y, Teng X, Meyer T J, Chen Z F. CoP nano-frames as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catal., 2020, 10(1): 412-419.
doi: 10.1021/acscatal.9b03623 URL

[42] Zhu J L, He G Q, Shen P K. A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation[J]. J. Power Sources, 2015, 275: 279-283.
doi: 10.1016/j.jpowsour.2014.11.004 URL

[43] Feng L G, Li K, Chang J F, Liu C P, Xing W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells[J]. Nano Energy, 2015, 15: 462-469.
doi: 10.1016/j.nanoen.2015.05.007 URL

[44] Li X, Wang H J, Yu H, Liu Z W, Wang H H, Peng F. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183.
doi: 10.1016/j.electacta.2015.10.128 URL

[45] Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, Shang L, Yang X F, Yan D Q, Han F Y, Zhang T R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445.
doi: 10.1016/j.nanoen.2020.104445 URL

[46] Jiao Y Q, Yan H J, Wang R H, Wang X W, Zhang X M, Wu A P, Tian C G, Jiang B J, Fu H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49596-49606.
doi: 10.1021/acsami.0c13533 URL

[47] Bai J, Li X, Wang A J, Prins R, Wang Y. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP[J]. J. Catal., 2012, 287: 161-169.
doi: 10.1016/j.jcat.2011.12.018 URL

[48] Zhu J L, Huang S L, Key J L, Nie S X, Ma S J, Shen P K. Facile synjournal of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation[J]. Catal. Sci. Technol., 2017, 7(24): 5974-5981.
doi: 10.1039/C7CY01835E URL

[49] Zhou C L, Gan M Y, Xie F, Ma L, Ding J J, Shen J, Han S C, Wei D Y, Zhan W. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.
doi: 10.1007/s11581-020-03707-1 URL

[50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y, Zou J L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20): 7674-7682.
doi: 10.1039/C6TA01319H URL


[51] Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z, Duan Y Q, Tang B, Zou J L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions[J]. J. Mater. Chem. A, 2018, 6(45): 22636-22644.
doi: 10.1039/C8TA08285E URL

[52] Zhang F, Meng H J, Zhang W J, Wang M, Li J P, Wang X G. Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: A strengthened composite supporting effect[J]. Int. J. Hydrogen Energy, 2018, 43(6): 3203-3215.
doi: 10.1016/j.ijhydene.2017.12.157 URL

[53] Li S, Tian Z Q, Liu Y, Jang Z, Hasan S W, Chen X, Tsiakaras P, Shen P K. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions[J]. Chin. J. Catal., 2021, 42(4): 648-657.
doi: 10.1016/S1872-2067(20)63680-4 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.