Corresponding Author

Hong-Jin Fan(fanhj@ntu.edu.sg)


Industrial hydrogen generation through water splitting, powered by renewable energy such as solar, wind and marine, paves a potential way for energy and environment sustainability. However, state-of-the-art electrolysis using high purity water as hydrogen source at an industrial level would bring about crisis of freshwater resource. Seawater splitting provides a practical path to solve potable water shortage, but still faces great challenges for large-scale industrial operation. Here we summarize recent developments in seawater splitting, covering general mechanisms, design criteria for electrodes, and industrial electrolyzer for direct seawater splitting. Multi-objective optimization methods to address the key challenges of active sites, reaction selectivity, corrosion resistance, and mass transfer ability will be discussed. The recent development in seawater electrolyzer and acquaint efficient strategies to design direct devices for long-time operation are also highlighted. Finally, we provide our own perspective to future opportunities and challenges towards direct seawater electrolysis.

Graphical Abstract


Seawater electrolysis, anticorrosion, alkaline hydrogen generation, industrial electrolyser

Publication Date


Online Available Date


Revised Date


Received Date



[1] Gray H B. Powering the planet with solar fuel[J]. Nat. Chem., 2009, 1(1): 7-7.
doi: 10.1038/nchem.141 pmid: 21378780

[2] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
pmid: 15310892

[3] Zhou Y, Hao W, Zhao X X, Zhou J D, Yu H M, Lin B, Liu Z, Pennycook S J, Li S Z, Fan H J. Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts[J]. Adv. Mater., 2022, 34(20): 2202598.
doi: 10.1002/adma.202202598 URL

[4] Zhang T, Liu Y P, Yu J, Ye Q T, Yang L, Li Y, Fan H J. Biaxial strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution[J]. Adv. Mater., 2022, 34(27): 2202195.
doi: 10.1002/adma.202202195 URL

[5] Jin H Y, Liu X, Vasileff A, Jiao Y, Zhao Y Q, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting[J]. ACS Nano, 2018, 12(12): 12761-12769.
doi: 10.1021/acsnano.8b07841 URL

[6] Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density[J]. Appl. Catal. B, 2021, 291: 120071.
doi: 10.1016/j.apcatb.2021.120071 URL

[7] Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: Opportunities and challenges[J]. ACS Energy Lett., 2019, 4(4): 933-942.
doi: 10.1021/acsenergylett.9b00220

[8] Liu S J, Ren S J, Gao R T, Liu X H, Wang L. Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis[J]. Nano Energy, 2022, 98: 107212.
doi: 10.1016/j.nanoen.2022.107212 URL

[9] Ke S C, Chen R, Chen G H, Ma X L. Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives[J]. Energy & Fuels, 2021, 35(16): 12948-12956.
doi: 10.1021/acs.energyfuels.1c02056 URL

[10] Kuang Y, Kenney M J, Meng Y T, Hung W H, Liu Y J, Huang J E, Prasanna R, Li P S, Li Y P, Wang L, Lin M C, McGehee M D, Sun X M, Dai H J. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proc. Natl. Acad. Sci., 2019, 116(14): 6624-6629.
doi: 10.1073/pnas.1900556116 URL

[11] Tong W M, Forster M, Dionigi F, Dresp S, Erami R S, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water[J]. Nat. Energy, 2020, 5(5): 367-377.
doi: 10.1038/s41560-020-0550-8 URL

[12] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.
doi: 10.1002/adfm.202010367 URL

[13] Sarno M, Ponticorvo E, Scarpa D. Active and stable gra-phene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting[J]. Electro-chem. Commun., 2020, 111: 106647.

[14] Dong G F, Xie F Y, Kou F X, Chen T T, Wang F Y, Zhou Y W, Wu K C, Du S W, Fang M, Ho J C. Nife-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater[J]. Mater. Today Energy, 2021, 22: 100883.

[15] Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Kiros Y. Stable and inexpensive electrodes for the hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2013, 38(26): 11484-11495.
doi: 10.1016/j.ijhydene.2013.04.159 URL

[16] Sun Y Q, Zhang T, Li C C, Xu K, Li Y. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting[J]. J. Mater. Chem. A, 2020, 8(27): 13415-13436.
doi: 10.1039/D0TA05038E URL

[17] Sriram P, Su D S, Periasamy A P, Manikandan A, Wang S W, Chang H T, Chueh Y L, Yen T J. Hybridizing strong quadrupole gap plasmons using optimized nano-antennas with bilayer MoS2 for excellent photo-electrochemical hydrogen evolution[J]. Adv. Energy Mater., 2018, 8(29): 1801184.
doi: 10.1002/aenm.201801184 URL

[18] Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972.
doi: 10.1002/cssc.201501581 pmid: 27010750

[19] Bigiani L, Barreca D, Gasparotto A, Andreu T, Verbeeck J, Sada C, Modin E, Lebedev O I, Morante J R, Maccato C. Selective anodes for seawater splitting via functionalization of anganese oxides by a plasma-assisted process[J]. Appl. Catal. B, 2021, 284: 119684.
doi: 10.1016/j.apcatb.2020.119684 URL

[20] Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat. Commun., 2019, 10: 5106.
doi: 10.1038/s41467-019-13092-7 pmid: 31704926

[21] Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Adv. Mater., 2021, 33(9): 2007377.
doi: 10.1002/adma.202007377 URL

[22] Kienitz B L, Baskaran H, Zawodzinski T A. Modeling the steady-state effects of cationic contamination on polymer electrolyte membranes[J]. Electrochim. Acta, 2009, 54(6): 1671-1679.
doi: 10.1016/j.electacta.2008.09.058 URL

[23] Bolar S, Shit S, Murmu N C, Kuila T. Progress in theoretical and experimental investigation on seawater electrolysis: Opportunities and challenges[J]. Sustain. Energy Fuels, 2021, 5(23): 5915-5945.

[24] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
doi: 10.1039/C6CS00328A URL

[25] Li J H, Liu Y P, Chen H, Zhang Z K, Zou X X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting[J]. Adv. Funct. Mater., 2021, 31(27): 2101820.
doi: 10.1002/adfm.202101820 URL

[26] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nörskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.

[27] Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater[J]. Int. J. Hydrogen Energy, 1980, 5(4): 401-408.
doi: 10.1016/0360-3199(80)90021-X URL

[28] Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochim. Acta, 1984, 29(11): 1503-1512.
doi: 10.1016/0013-4686(84)85004-5 URL

[29] Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
doi: 10.1021/acs.chemrev.9b00248 pmid: 31657904

[30] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
doi: 10.1039/c4cs00448e pmid: 25886650

[31] Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst[J]. ACS Appl. Energy Mater., 2020, 3(4): 3978-3983.
doi: 10.1021/acsaem.0c00383 URL

[32] Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis[J]. Int. J. Hydrogen Energy, 1982, 7(12): 925-932.
doi: 10.1016/0360-3199(82)90160-4 URL

[33] Lu X Y, Pan J, Lovell E, Tan T H, Ng Y H, Amal R. A sea-change: Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J]. Energy Environ. Sci., 2018, 11(7): 1898-1910.
doi: 10.1039/C8EE00976G URL

[34] Zhang B, Wang J, Wu B, Guo X W, Wang Y J, Chen D, Zhang Y C, Du K, Oguzie E E, Ma X L. Unmasking chloride attack on the passive film of metals[J]. Nat. Commun., 2018, 9: 2559.
doi: 10.1038/s41467-018-04942-x pmid: 29967353

[35] Scott S B, S?rensen J E, Rao R R, Moon C, Kibsgaard J, Shao-Horn Y, Chorkendorff I. The low overpotential regime of acidic water oxidation part II: Trends in metal and oxygen stability numbers[J]. Energy Environ. Sci., 2022, 15(5): 1988-2001.
doi: 10.1039/D1EE03915F URL

[36] Wang C, Shang H Y, Jin L J, Xu H, Du Y K. Advances in hydrogen production from electrocatalytic seawater splitting[J]. Nanoscale, 2021, 13(17): 7897-7912.
doi: 10.1039/D1NR00784J URL

[37] Lan C, Xie H P, Wu Y F, Chen B, Liu T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni-S coordination for oxygen evolution in alkaline seawater[J]. Energy & Fuels, 2022, 36(5): 2910-2917.
doi: 10.1021/acs.energyfuels.1c04354 URL

[38] Hegner F S, Garcés-Pineda F A, González-Cobos J, Rodríguez-García B, Torréns M, Palomares E, López N, Galán-Mascarós J R. Understanding the catalytic selectivity of cobalt hexacyanoferrate toward oxygen evolution in seawater electrolysis[J]. ACS Catal., 2021, 11(21): 13140-13148.
doi: 10.1021/acscatal.1c03502 URL

[39] d’Amore-Domenech R, Leo T J. Sustainable hydrogen production from offshore marine renewable farms: Techno-energetic insight on seawater electrolysis technologies[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 8006-8022.
doi: 10.1021/acssuschemeng.8b06779 URL

[40] You H H, Wu D S, Si D H, Cao M N, Sun F F, Zhang H, Wang H M, Liu T F, Cao R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting[J]. J. Am. Chem. Soc., 2022, 144(21): 9254-9263.
doi: 10.1021/jacs.2c00242 URL

[41] You B, Sun Y J. Innovative strategies for electrocatalytic water splitting[J]. Acc. Chem. Res., 2018, 51(7): 1571-1580.
doi: 10.1021/acs.accounts.8b00002 URL

[42] Skúlason E, Tripkovic V, Björketun M E, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nörskov J K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations[J]. J. Phys. Chem. C, 2010, 114(42): 18182-18197.
doi: 10.1021/jp1048887 URL

[43] Zheng J J. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting[J]. Appl. Surf. Sci., 2017, 413: 72-82.
doi: 10.1016/j.apsusc.2017.04.016 URL

[44] Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting[J]. J. Mater. Chem. A, 2016, 4(17): 6513-6520.
doi: 10.1039/C6TA00785F URL

[45] Mahmood A, Lin H F, Xie N H, Wang X. Surface confinement etching and polarization matter: A new approach to prepare ultrathin ptagco nanosheets for hydrogen-evolution reactions[J]. Chem. Mater., 2017, 29(15): 6329-6335.
doi: 10.1021/acs.chemmater.7b01598 URL

[46] Chen Y, Zheng X X, Huang X Y, Wang A J, Zhang Q L, Huang H, Feng J J. Trimetallic ptrhco petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions[J]. J. Colloid Interface Sci., 2020, 559: 206-214.
doi: 10.1016/j.jcis.2019.10.024 URL

[47] Chen H Y, Niu H J, Han Z, Feng J J, Huang H, Wang A J. Simple fabrication of trimetallic platinum-nickel-cobalt hollow alloyed 3D multipods for highly boosted hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2020, 570: 205-211.
doi: 10.1016/j.jcis.2020.02.090 URL

[48] Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022, 34(21): 2201774.
doi: 10.1002/adma.202201774 URL

[49] Jin H Y, Wang X S, Tang C, Vasileff A, Li L Q, Slattery A, Qiao S Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride[J]. Adv. Mater., 2021, 33(13): 2007508.
doi: 10.1002/adma.202007508 URL

[50] Fei H L, Dong J C, Arellano-Jiménez M J, Ye G L, Kim N D, Samuel E L G, Peng Z W, Zhu Z, Qin F, Bao J M, Yacaman M J, Ajayan P M, Chen D L, Tour J M. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nat. Commun., 2015, 6: 8668.
doi: 10.1038/ncomms9668 pmid: 26487368

[51] Lei C J, Wang Y, Hou Y, Liu P, Yang J, Zhang T, Zhuang X D, Chen M W, Yang B, Lei L C, Yuan C, Qiu M, Feng X L. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics[J]. Energy Environ. Sci., 2019, 12(1): 149-156.
doi: 10.1039/C8EE01841C URL

[52] Chen W X, Pei J J, He C T, Wan J W, Ren H L, Zhu Y Q, Wang Y, Dong J C, Tian S B, Cheong W C, Lu S Q, Zheng L R, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017, 56(50): 16086-16090.
doi: 10.1002/anie.201710599 pmid: 29076292

[53] Chen W X, Pei J J, He C T, Wan J W, Ren H L, Wang Y, Dong J C, Wu K L, Cheong W C, Mao J J, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Single tungsten atoms supported on MoF-derived N-doped carbon for robust electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): 1800396.
doi: 10.1002/adma.201800396 URL

[54] Zang W J, Sun T, Yang T, Xi S B, Waqar M, Kou Z K, Lyu Z Y, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Adv. Mater., 2021, 33(8): 2003846.
doi: 10.1002/adma.202003846 URL

[55] Hung W H, Xue B Y, Lin T M, Lu S Y, Tsao I Y. A highly active selenized nickel-iron electrode with layered double hydroxide for electrocatalytic water splitting in saline electrolyte[J]. Mater. Today Energy, 2021, 19: 100575.

[56] Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution[J]. J. Am. Chem. Soc., 2018, 140(32): 10270-10281.
doi: 10.1021/jacs.8b05382 URL

[57] Deng J, Deng D H, Bao X H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective[J]. Adv. Mater., 2017, 29(43): 1606967.
doi: 10.1002/adma.201606967 URL

[58] Yu L, Deng D H, Bao X H. Chain mail for catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(36): 15294-15297.
doi: 10.1002/anie.202007604 URL

[59] Deng J, Ren P J, Deng D H, Bao X H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2015, 54(7): 2100-2104.
doi: 10.1002/anie.201409524 pmid: 25565666

[60] Zhang T, Sun Y Q, Hang L F, Bai Y, Li X Y, Wen L L, Zhang X M, Lyu X J, Cai W P, Li Y. Large-scale synthesis of Co/CoOx encapsulated in nitrogen-, oxygen-, and sulfur-tridoped three-dimensional porous carbon as efficient electrocatalysts for hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2018, 1(11): 6250-6259.
doi: 10.1021/acsaem.8b01272 URL

[61] Jadhav A R, Kumar A, Lee J J, Yang T, Na S, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface[J]. J. Mater. Chem. A, 2020, 8(46): 24501-24514.
doi: 10.1039/D0TA08543J URL

[62] Zhang T, Bai Y, Sun Y Q, Hang L F, Li X Y, Liu D L, Lyu X J, Li C C, Cai W P, Li Y. Laser-irradiation induced synthesis of spongy auagpt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity[J]. J. Mater. Chem. A, 2018, 6(28): 13735-13742.
doi: 10.1039/C8TA04087G URL

[63] Zhang T, Sun Y Q, Li X J, Li X Y, Liu D L, Liu G Q, Li C C, Fan H J, Li Y. Ptpdag hollow nanodendrites: Template-free synthesis and high electrocatalytic activity for methanol oxidation reaction[J]. Small Methods, 2020, 4(1): 1900709.
doi: 10.1002/smtd.201900709 URL

[64] Tu W Z, Luo W J, Chen C L, Chen K, Zhu E B, Zhao Z P, Wang Z L, Hu T, Zai H C, Ke X X, Sui M L, Chen P W, Zhang Q S, Chen Q, Li Y J, Huang Y. Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis[J]. Adv. Funct. Mater., 2020, 30(6): 1908230.
doi: 10.1002/adfm.201908230 URL

[65] Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.
doi: 10.1021/jacs.0c12740 pmid: 33656891

[66] Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting[J]. Adv. Funct. Mater., 2021, 31(1): 2006484.
doi: 10.1002/adfm.202006484 URL

[67] Zhuang L Z, Li J K, Wang K Y, Li Z H, Zhu M H, Xu Z. Structural buffer engineering on metal oxide for long-term stable seawater splitting[J]. Adv. Funct. Mater., 2022, 32(25): 2201127.
doi: 10.1002/adfm.202201127 URL

[68] Yang Q F, Cui Y C, Li Q Y, Cai J H, Wang D, Feng L. Nanosheet-derived ultrafine CoRuOx@NC nanoparticles with a core@shell structure as bifunctional electrocatalysts for electrochemical water splitting with high current density or low power input[J]. ACS Sustain. Chem. Eng., 2020, 8(32): 12089-12099.
doi: 10.1021/acssuschemeng.0c03410 URL

[69] Jian J, Yuan L, Qi H, Sun X J, Zhang L, Li H, Yuan H M, Feng S H. Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential[J]. ACS Appl. Mater. Interfaces, 2018, 10(47): 40568-40576.
doi: 10.1021/acsami.8b14603 URL

[70] Yao Y, Zhu Y H, Pan C A Q, Wang C Y, Hu S Y, Xiao W, Chi X, Fang Y R, Yang J, Deng H T, Xiao S Q, Li J B, Luo Z, Guo Y B. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(23): 8720-8730.
doi: 10.1021/jacs.1c02831 pmid: 34100598

[71] Luo Y T, Zhang Z Y, Chhowalla M, Liu B L. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Adv. Mater., 2022, 34(16): 2108133.
doi: 10.1002/adma.202108133 URL

[72] Jothi V R, Karuppasamy K, Maiyalagan T, Rajan H, Jung C Y, Yi S C. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting[J]. Adv. Energy Mater., 2020, 10(24): 1904020.
doi: 10.1002/aenm.201904020 URL

[73] Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017, 29(47): 1703798.
doi: 10.1002/adma.201703798 URL

[74] Wu T, Song E H, Zhang S N, Luo M J, Zhao C D, Zhao W, Liu J J, Huang F Q. Engineering metallic heterostructure based on Ni3N and 2M-MoS2 for alkaline water electrolysis with industry-compatible current density and stability[J]. Adv. Mater., 2022, 34(9): 2108505.
doi: 10.1002/adma.202108505 URL

[75] Wen Q L, Yang K, Huang D J, Cheng G, Ai X M, Liu Y W, Fang J K, Li H Q, Yu L, Zhai T Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers[J]. Adv. Energy Mater., 2021, 11(46): 2102353.
doi: 10.1002/aenm.202102353 URL

[76] Seenivasan S, Kim D H. Engineering the surface anatomy of an industrially durable NiCo2S4/NiMo2S4/NiO bifunctional electrode for alkaline seawater electrolysis[J]. J. Mater. Chem. A, 2022, 10(17): 9547-9564.
doi: 10.1039/D1TA10850F URL

[77] Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis[J]. Int. J. Hydrogen Energy, 2013, 38(12): 4901-4934.
doi: 10.1016/j.ijhydene.2013.01.151 URL

[78] Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the zirfon perl separator for alkaline water electrolysis[J]. J. Electrochem. Soc., 2016, 163(14): F1480-F1488.[79] Zhang Z, Jiang C, Li P, Yao K G, Zhao Z L, Fan J T, Li H, Wang H J. Benchmarking phases of ruthenium dichalcogenides for electrocatalysis of hydrogen evolution: Theoretical and experimental insights[J]. Small, 2021, 17(13): 2007333.
doi: 10.1002/smll.202007333 URL

[80] Dresp S, Dionigi F, Loos S, de Araujo J F, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: Activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell lev



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.