Corresponding Author

Jun Ming(jun.ming@ciac.ac.cn)


Solid-electrolyte interphase (SEI) layer formed on the electrode by electrolyte decomposition has been considered to be one of the most important factors affecting the battery performance. We discover that the metal ion solvation structure can also influence the performance, particularly, it can elucidate many phenomena that the SEI cannot. In this review, we summarize the importance of the metal ion solvation structure and the derived metal ion de-solvation behaviors, by which we can build an interfacial model to show the relationship between the interfacial behavior and electrode performance, and then apply to different electrode and battery systems. We emphasize the influences of ionic and molecular interactions on electrode surface that differ from previous SEI-based interpretations. This review provides a new view angle to understand the battery performance and guide the electrolyte design.

Graphical Abstract


battery, electrolyte, solvation structure, electrode interfacial model, solid electrolyte interphase layer

Publication Date


Online Available Date


Revised Date


Received Date



[1] Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561.

[2] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295.

[3] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.

[4] Wu Y Q, Xie L Q, Ming H, Guo Y J, Hwang J Y, Wang W X, He X M, Wang L M, Alshareef H N, Sun Y K, Ming J. An empirical model for the design of batteries with high energy density[J]. ACS Energy Lett., 2020, 5(3): 807-816.

[5] Markevich E, Salitra G, Aurbach D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Lett., 2017, 2(6): 1337-1345.

[6] Ruan D G, Chen M, Wen X Y, Li S Q, Zhou X G, Che Y X, Chen J K, Xiang W J, Li S L, Wang H, Liu X, Li W S. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive[J]. Nano Energy, 2021, 90: 106535.

[7] Su C C, He M N, Cai M, Shi J Y, Amine R, Rago N D, Guo J C, Rojas T, Ngo A T, Amine K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: 106720.

[8] Tan L J, Chen S Q, Chen Y W, Fan J J, Ruan D G, Nian Q S, Chen L, Jiao S H, Ren X D. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J]. Angew. Chem. Int. Edit., 2022, 61(32): e202203693.

[9] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4417.
doi: 10.1021/cr030203g pmid: 15669157

[10] Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate[J]. J. Electrochem. Soc., 2002, 149(12): A1578-A1583.

[11] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23): 11503-11618.
doi: 10.1021/cr500003w pmid: 25351820

[12] Liang J Y, Zeng X X, Zhang X D, Wang P F, Ma J Y, Yin Y X, Wu X W, Guo Y G, Wan L J. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J. Am. Chem. Soc., 2018, 140(22): 6767-6770.

[13] Wahyudi W, Cao Z, Kumar P, Li M L, Wu Y Q, Hedhili M N, Anthopoulos T D, Cavallo L, Li L J, Ming J. Phase inversion strategy to flexible freestanding electrode: Critical coupling of binders and electrolytes for high performance Li-S battery[J]. Adv. Funct. Mater., 2018, 28(34): 1802244.

[14] Fan J J, Dai P, Shi C G, Wen Y F, Luo C X, Yang J, Song C, Huang L, Sun S G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Adv. Funct. Mater., 2021, 31(17): 2010500.

[15] Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(20): e202201406.

[16] Shin W, Manthiram A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(13): e202115909.

[17] Xing L D, Zheng X W, Schroeder M, Alvarado J, Cresce A V, Xu K, Li Q S, Li W S. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Acc. Chem. Res., 2018, 51(2): 282-289.

[18] Niu C J, Liu D Y, Lochala J A, Anderson C S, Cao X, Gross M E, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732.

[19] Shadike Z, Lee H, Borodin O, Cao X, Fan X L, Wang X L, Lin R Q, Bak S M, Ghose S, Xu K, Wang C S, Liu J, Xiao J, Yang X Q, Hu E Y. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nat. Nanotechnol., 2021, 16(5): 549-554.
doi: 10.1038/s41565-020-00845-5 pmid: 33510453

[20] Kim M S, Zhang Z W, Rudnicki P E, Yu Z A, Wang J, Y Wang H S, Oyakhire S T, Chen Y L, Kim S C, Zhang W B, Boyle D T, Kong X, Xu R, Huang Z J, Huang W, Bent S F, Wang L W, Qin J, Bao Z N, Cui Y. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nat. Mater., 2022, 21(4): 445-454.

[21] Wang H S, Yu Z, Kong X, Kim S C, Boyle D T, Qin J, Bao Z N, Cui Y. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616.

[22] Fong R, Vonsacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. J. Electrochem. Soc., 1990, 137(7): 2009-2013.

[23] Cheng M, Tang W P, Li Y, Zhu K J. Study on compositions and changes of SEI-film of Li2MnO3 positive material during the cycles[J]. Catal. Today, 2016, 274: 116-122.

[24] Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, Grey C P. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nat. Commun., 2020, 11(1): 2224.
doi: 10.1038/s41467-020-16114-x pmid: 32376916

[25] Zhao F P, Zhang S M, Li Y G, Sun X L. Emerging characterization techniques for electrode interfaces in sulfide-based all-solid-state lithium batteries[J]. Small Str-uctures, 2021, 3(1): 2100146.

[26] Zhou Y F, Su M, Yu X F, Zhang Y Y, Wang J G, Ren X D, Cao R G, Xu W, Baer D R, Du Y G, Borodin O, Wang Y T, Wang X L, Xu K, Xu Z J, Wang C M, Zhu Z H. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nat. Nanotechnol., 2020, 15(3): 224-230.
doi: 10.1038/s41565-019-0618-4 pmid: 31988500

[27] Andersson A M, Henningson A, Siegbahn H, Jansson U, Edström K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy[J]. J. Power Sources, 2003, 119: 522-527.

[28] Lu P, Harris S J. Lithium transport within the solid electrolyte interphase[J]. Electrochem. Commun., 2011, 13(10): 1035-1037.

[29] Xu H Y, Li Z P, Liu T C, Han C, Guo C, Zhao H, Li Q, Lu J, Amine K, Qiu X P. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode[J]. Angew. Chem. Int. Edit., 2022, 61(30): e202202894.

[30] Li Y Z, Li Y B, Pei A L, Yan K, Sun Y M, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
doi: 10.1126/science.aam6014 pmid: 29074771

[31] Zhang Z W, Li Y Z, Xu R, Zhou W J, Li Y B, Oyakhire S T, Wu Y C, Xu J W, Wang H S, Yu Z A, Boyle D T, Huang W, Ye Y S, Chen H, Wan J Y, Bao Z N, Chiu W, Cui Y. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.
doi: 10.1126/science.abi8703 pmid: 34990230

[32] Cheng H R, Sun Q J, Li L L, Zou Y G, Wang Y Q, Cai T, Zhao F, Liu G, Ma Z, Wahyudi W, Li Q, Ming J. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Lett., 2022, 7(1): 490-513.

[33] Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. ACS Energy Lett., 2018, 3(2): 335-340.

[34] Ming J, Cao Z, Wu Y Q, Wahyudi W, Wang W X, Guo X R, Cavallo L, Hwang J Y, Shamim A, Li L J, Sun Y K, Alshareef H N. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Lett., 2019, 4(11): 2613-2622.
doi: 10.1021/acsenergylett.9b01441

[35] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions[J]. Electrochem. Solid State Lett., 2003, 6(1): A13-A15.

[36] Xu K. “Charge-transfer” process at graphite/electrolyte in-terface and the solvation sheath structure of Li+ in nonaqueous electrolytes[J]. J. Electrochem. Soc., 2007, 154(3): A162-A167.

[37] Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chem. Commun., 2013, 49(95): 11194-11196.

[38] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J. Am. Chem. Soc., 2014, 136(13): 5039-5046.
doi: 10.1021/ja412807w pmid: 24654781

[39] Ren X D, Gao P Y, Zou L F, Jiao S H, Cao X, Zhang X H, Jia H, Engelhard M H, Matthews B E, Wu H P, Lee H, Niu C J, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(46): 28603-28613.
doi: 10.1073/pnas.2010852117 pmid: 33144505

[40] Cao X, Gao P Y, Ren X D, Zou L F, Engelhard M H, Matthews B E, Hu J T, Niu C J, Liu D Y, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(9): e2020357118.

[41] Liu G, Sun Q J, Li Q, Zhang J L, Ming J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427.

[42] Sun Q J, Cao Z, Zhang J L, Cheng H R, Zhang J, Li Q, Ming H, Liu G, Ming J. Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries[J]. Adv. Funct. Mater., 2021, 31(22): 2009122.

[43] Wahyudi W, Ladelta V, Tsetseris L, Alsabban M M, Guo X R, Yengel E, Faber H, Adilbekova B, Seitkhan A, Emwas A H, Hedhili M N, Li L J, Tung V, Hadjichristidis N, Anthopoulos T D, Ming J. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2101593.

[44] Liu G, Cao Z, Wang P, Ma Z, Zou Y G, Sun Q J, Cheng H R, Cavallo L, Li S Y, Li Q, Ming J. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Adv. Sci., 2022, 9(26): 2201893.

[45] Tian Z N, Zou Y G, Liu G, Wang Y Z, Yin J, Ming J, Alshareef H N. Electrolyte solvation structure design for sodium ion batteries[J]. Adv. Sci., 2022, 9(22): 2201207.

[46] Wahyudi W, Guo X R, Ladelta V, Tsetseris L, Nugraha M I, Lin Y B, Tung V, Hadjichristidis N, Li Q, Xu K, Ming J, Anthopoulos T D. Hitherto unknown solvent and anion pairs in solvation structures reveal new insights into high-performance lithium-ion batteries[J]. Adv. Sci., 2022, 9(28): 2202405.

[47] Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.

[48] Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558.

[49] Deng W, Dai W H, Zhou X F, Han Q G, Fang W, Dong N, He B Y, Liu Z P. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh·kg-1 lithium metal battery[J]. ACS Energy Lett., 2021, 6(1): 115-123.

[50] Jie Y L, Liu X J, Lei Z W, Wang S Y, Chen Y W, Huang F Y, Cao R G, Zhang G Q, Jiao S H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angew. Chem. Int. Edit., 2020, 59(9): 3505-3510.

[51] Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charg-ing batteries[J]. Angew. Chem. Int. Edit., 2021, 60(7): 3402-3406.

[52] Li F, He J, Liu J D, Wu M G, Hou Y Y, Wang H P, Qi S H, Liu Q H, Hu J W, Ma J M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angew. Chem. Int. Edit., 2021, 60(12): 6600-6608.

[53] Ming J, Cao Z, Li Q, Wahyudi W, Wang W X, Cavallo L, Park K J, Sun Y K, Alshareef H N. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Lett., 2019, 4(7): 1584-1593.
doi: 10.1021/acsenergylett.9b00822

[54] Xu K, Lee U, Zhang S S, Jow T R. Graphite/electrolyte interface formed in LiBOB-based electrolytes-II. Potential dependence of surface chemistry on graphitic anodes[J]. J. Electrochem. Soc., 2004, 151(12): A2106-A2112.

[55] Yao W H, Zhang Z R, Gao J, Li J, Xu J, Wang Z C, Yang Y. Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Energy Environ. Sci., 2009, 2(10): 1102-1108.

[56] Nie M Y, Chalasani D, Abraham D P, Chen Y J, Bose A, Lucht B L. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. J. Phys. Chem. C, 2013, 117(3): 1257-1267.

[57] Ping P, Xia X, Wang Q S, Sun J H, Dahn J R. The effect of trimethoxyboroxine on some positive electrodes for Li-ion batteries[J]. J. Electrochem. Soc., 2013, 160(3): A426-A429.

[58] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model[J]. J. Electrochem. Soc., 1979, 126(12): 2047-2051.

[59] Peled E. Film forming reaction at the lithium/electrolyte interface[J]. J. Power Sources, 1983, 9(3-4): 253-266.

[60] Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J. Electrochem. Soc., 1997, 144(8): L208-L210.

[61] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22: 587-603.

[62] Aurbach D, Levi M D, Levi E, Schechter A. Failure and stabilization mechanisms of graphite electrodes[J]. J. Phys. Chem. B, 1997, 101(12): 2195-2206.

[63] Li T, Balbuena P B. Theoretical studies of the reduction of ethylene carbonate[J]. Chem. Phys. Lett, 2000, 317(3-5): 421-429.

[64] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochim. Acta, 2002, 47(9): 1423-1439.

[65] Edström K, Gustafsson T, Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochim. Acta, 2004, 50(2-3): 397-403.

[66] Blyth R I R, Buqa H, Netzer F P, Ramsey M G, Besenhard J O, Golob P, Winter M. XPS studies of graphite electrode materials for lithium ion batteries[J]. Appl. Surf. Sci., 2000, 167(1-2): 99-106.

[67] Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
doi: 10.1021/acsnano.8b05038 pmid: 30226745

[68] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2): 1379-1394.

[69] Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat. Commun., 2015, 6: 7436.
doi: 10.1038/ncomms8436 pmid: 26081242

[70] Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy Environ. Sci., 2016, 9(6): 1955-1988.

[71] Xia J, Dahn J R. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives[J]. J. Power Sources, 2016, 324: 704-711.

[72] Xia J, Nelson K J, Lu Z H, Dahn J R. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. J. Power Sources, 2016, 329: 387-397.

[73] Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012.

[74] Wang X S, Mai W C, Guan X C, Liu Q, Tu W Q, Li W S, Kang F Y, Li B H. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy Environ. Mater., 2020, 4(3): 284-292.

[75] Yamada Y, Koyama Y, Abe T, Ogumi Z. Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes[J]. J. Phys. Chem. C, 2009, 113(20): 8948-8953.

[76] Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion[J]. J. Phys. Chem. C, 2010, 114(26): 11680-11685.

[77] Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angew. Chem. Int. Ed. Engl., 2021, 60(7): 3402-3406.

[78] Zhang J, Cao Z, Zhou L, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of graphite-compatible electrolytes in potassium-ion batteries[J]. ACS Energy Lett., 2020, 5(8): 2651-2661.

[79] Liu G, Cao Z, Zhou L, Zhang J, Sun Q J, Hwang J Y, Cavallo L, Wang L M, Sun Y K, Ming J. Additives engineered nonflammable electrolyte for safer potassium ion batteries[J]. Adv. Funct. Mater., 2020, 30(43): 2001934.

[80] Li Q, Cao Z, Liu G, Cheng H R, Wu Y Q, Ming H, Park G T, Yin D M, Wang L M, Cavallo L, Sun Y K, Ming J. Electrolyte chemistry in 3D metal oxide nanorod arrays deciphers lithium dendrite-free plating/stripping behaviors for high-performance lithium batteries[J]. J. Phys. Chem. Lett., 2021, 12(20): 4857-4866.
doi: 10.1021/acs.jpclett.1c01049 pmid: 34002601

[81] Li Q, Cao Z, Wahyudi W, Liu G, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Alshareef H N, Ming J. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Lett., 2021, 6(1): 69-78.

[82] Zhang J, Cao Z, Zhou L, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of stable electrolytes for potassium ion batteries[J]. ACS Energy Lett., 2020, 5(10): 3124-3131.

[83] Zhou L, Cao Z, Zhang J, Sun Q J, Wu Y Q, Wahyudi W, Hwang J Y, Wang L M, Cavallo L, Sun Y K, Alshareef H N, Ming J. Engineering sodium-ion solvation structure to stabilize sodium anodes: Universal strategy for fast-charging and safer sodium-ion batteries[J]. Nano Lett., 2020, 20(5): 3247-3254.
doi: 10.1021/acs.nanolett.9b05355 pmid: 32319776

[84] Zhou L, Cao Z, Zhang J, Cheng H R, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries[J]. Adv. Mater., 2021, 33(8): 2005993.

[85] Zhou L, Cao Z, Wahyudi W, Zhang J, Hwang J Y, Cheng Y, Wang L M, Cavallo L, Anthopoulos T, Sun Y K, Alshareef H N, Ming J. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Lett., 2020, 5(3): 766-776.

[86] Sun Q J, Cao Z, Ma Z, Zhang J L, Cheng H R, Guo X R, Park G T, Li Q, Xie E Q, Cavallo L, Sun Y-K, Ming J. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(10): 3545-3556.

[87] Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Cai T, Cheng H R, Li Q, Kim H, Xie E Q, Cavallo L, Sun Y K, Ming J. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries[J]. ACS Materials Lett., 2022, 4(11): 2233-2243.

[88] Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Liu G, Cheng H R, Cai T, Xie E Q, Cavallo L, Li Q, Ming J. Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries[J]. Adv. Funct. Mater., doi: 10.1002/adfm.202210292.
doi: 10.1002/adfm.202210292 URL

[89] Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis[J]. Chem.-Eur. J., 2020, 26(35): 7930-7936.
doi: 10.1002/chem.202001038 pmid: 32337745

[90] Liao X L, Huang Q M, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S. Self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive[J]. J. Power Sources, 2014, 272: 501-507.

[91] Röser S, Lerchen A, Ibing L, Cao X, Kasnatscheew J, Glorius F, Winter M, Wagner R. Highly effective solid electrolyte interphase-forming electrolyte additive enabling high voltage lithium-ion batteries[J]. Chem. Mater., 2017, 29(18): 7733-7739.

[92] Ma L, Ellis L, Glazier S L, Ma X W, Liu Q Q, Li J, Dahn J R. LiPO2F2 as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. J. Electrochem. Soc., 2018, 165(5): A891-A899.

[93] Zou Y G, Cao Z, Zhang J, Wahyudi W, Wu Y Q, Liu G, Li Q, Cheng H R, Zhang D Y, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Ming J. Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries[J]. Adv. Mater., 2021, 33(43): 2102964.

[94] Ming J, Guo J, Xia C, Wang W X, Alshareef H N. Zinc-ion batteries: materials, mechanisms, and applications[J]. Mat. Sci. Eng. R., 2019, 135: 58-84.
doi: 10.1016/j.mser.2018.10.002



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.