Corresponding Author

Tingzheng Hou(tingzheng_hou@berkeley.edu);
Cheng Tang(cheng.tang@adelaide.edu.au)


Electrolytes and the associated electrode-electrolyte interfaces are crucial for the development and application of high-capacity energy storage systems. Specifically, a variety of electrolyte properties, ranging from mechanical (compressibility, viscosity), thermal (heat conductivity and capacity), to chemical (solubility, activity, reactivity), transport, and electrochemical (interfacial and interphasial), are correlated to the performance of the resultant full energy storage device. In order to facilitate the operation of novel electrode materials, extensive experimental efforts have been devoted to improving these electrolyte properties by tuning the physical design and/or chemical composition. Meanwhile, the recent development of theoretical modeling methods is providing atomistic understandings of the electrolyte’s role in regulating the ion transport and enabling a functional interface. In this regard, we stand at a new frontier to take advantage of the revealed mechanistic insights into rationally design novel electrolyte systems. In this review, we first summarize the composition, solvation structure, and transport properties of conventional electrolytes as well as the formation mechanism of the electrode-electrolyte interphase. Moreover, some of the promising energy storage systems are briefly introduced. Further, approaches to stabilize the electrode-electrolyte interphase using novel electrolyte design, including electrolyte additives, high-concentration electrolytes, and solid-state electrolytes, are discussed. Some recent advances in the atomistic modeling of these aspects are particularly focused to provide a fundamental understanding of electrolytes and a comprehensive guide for future electrolyte design. Finally, we highlight the prospects of theoretical screening of novel electrolytes.

Graphical Abstract


lithium-ion batteries, electrolytes, atomistic modeling, solid electrolyte interphase, solid-state electrolytes

Publication Date


Online Available Date


Revised Date


Received Date



[1] Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463.

[2] Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries[J]. 2D Mater., 2015, 2(1): 014011.

[3] Lun Z, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z, Kim H, Balasubramanian M, Sun Y, Huang J, Tian Y, Kim H, McCloskey B D, Yang W, Clement R J, Ji H, Ceder G. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(2): 214-221.
doi: 10.1038/s41563-020-00816-0 pmid: 33046857

[4] Clément R J, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes[J]. Energy Environ. Sci., 2020, 13(2): 345-373.

[5] Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v pmid: 25026475

[6] Chen X, Li X, Mei D, Feng J, Hu M Y, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J G. Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode[J]. ChemSus-Chem, 2014, 7(2): 549-554.

[7] Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16 pmid: 28265117

[8] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4418.
doi: 10.1021/cr030203g pmid: 15669157

[9] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.

[10] Schroder K, Alvarado J, Yersak T A, Li J, Dudney N, Webb L J, Meng Y S, Stevenson K J. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chem. Mater., 2015, 27(16): 5531-5542.

[11] Cheng X B, Yan C, Chen X, Guan C, Huang J Q, Peng H J, Zhang R, Yang S T, Zhang Q. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270.

[12] Hou T, Yang G, Rajput N N, Self J, Park S W, Nanda J, Persson K A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: 103881.

[13] Blau S M, Patel H D, Spotte-Smith E W C, Xie X, Dwaraknath S, Persson K A. A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation[J]. Chem. Sci., 2021, 12(13): 4931-4939.
doi: 10.1039/d0sc05647b pmid: 34163740

[14] Shi S Q, Lu P, Liu Z Y, Qi Y, Hector L G, Li H, Harris S J. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J. Am. Chem. Soc., 2012, 134(37): 15476-15487.
pmid: 22909233

[15] Shi S, Qi Y, Li H, Hector L G. Defect thermodynamics and diffusion mechanisms in Li2Co3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. J. Phys. Chem. C, 2013, 117(17): 8579-8593.

[16] Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes[J]. J. Electrochem. Soc., 1995, 142(9): 2873-2882.

[17] Xu K, Lam Y, Zhang S S, Jow T R, Curtis T B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. J. Phys. Chem. C, 2007, 111(20): 7411-7421.

[18] Wang L, Menakath A, Han F, Wang Y, Zavalij P Y, Gaskell K J, Borodin O, Iuga D, Brown S P, Wang C, Xu K, Eichhorn B W. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nat. Chem., 2019, 11(9): 789-796.
doi: 10.1038/s41557-019-0304-z pmid: 31427766

[19] Seo D M, Chalasani D, Parimalam B S, Kadam R, Nie M, Lucht B L. Reduction reactions of carbonate solvents for lithium ion batteries[J]. ECS Electrochem. Lett., 2014, 3(9): A91-A93.

[20] Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edström K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries — a photoelectron spectroscopy study[J]. Chem. Mater., 2013, 25(3): 394-404.

[21] Yoon T, Milien M S, Parimalam B S, Lucht B L. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chem. Mater., 2017, 29(7): 3237-3245.

[22] Parimalam B S, MacIntosh A D, Kadam R, Lucht B L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. J. Phys. Chem. C, 2017, 121(41): 22733-22738.

[23] Jurng S, Brown Z L, Kim J, Lucht B L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy Environ. Sci., 2018, 11(9): 2600-2608.

[24] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011, 4(9): 3243.

[25] Galushkin N E, Yazvinskaya N N, Galushkin D N. Mec-hanism of gases generation during lithium-ion batteries cycling[J]. J. Electrochem. Soc., 2019, 166(6): A897-A908.
doi: 10.1149/2.0041906jes

[26] Hou T, Fong K D, Wang J, Persson K A. The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries[J]. Chem. Sci., 2021, 12(44): 14740-14751.
doi: 10.1039/d1sc04265c pmid: 34820089

[27] Liang C, Kwak K, Cho M. Revealing the solvation structure and dynamics of carbonate electrolytes in lithium-ion batteries by two-dimensional infrared spectrum modeling[J]. J. Phys. Chem. Lett., 2017, 8(23): 5779-5784.
doi: 10.1021/acs.jpclett.7b02623 pmid: 29131650

[28] Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B, Lucht B L. Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes[J]. J. Phys. Chem. C, 2015, 119(25): 14038-14046.

[29] Pekarek R T, Affolter A, Baranowski L L, Coyle J, Hou T, Sivonxay E, Smith B A, McAuliffe R D, Persson K A, Key B, Apblett C, Veith G M, Neale N R. Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon-lithium alloy anode batteries probed by FTIR spectroscopy[J]. J. Mater. Chem. A, 2020, 8(16): 7897-7906.

[30] Giorgini M G, Futamatagawa K, Torii H, Musso M, Cerini S. Solvation structure around the Li+ ion in mixed cyclic/linear carbonate solutions unveiled by the Raman noncoincidence effect[J]. J. Phys. Chem. Lett., 2015, 6(16): 3296-3302.

[31] Allen J L, Borodin O, Seo D M, Henderson W A. Combined quantum chemical/raman spectroscopic analyses of Li+ cation solvation: cyclic carbonate solvents—ethylene carbonate and propylene carbonate[J]. J. Power Sources, 2014, 267: 821-830.

[32] Su C C, He M, Amine R, Rojas T, Cheng L, Ngo A T, Amine K. Solvating power series of electrolyte solvents for lithium batteries[J]. Energy Environ. Sci., 2019, 12(4): 1249-1254.

[33] Su C C, He M, Amine R, Chen Z, Amine K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2018, 57(37): 12033-12036.

[34] Borodin O, Olguin M, Ganesh P, Kent P R, Allen J L, Henderson W A. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry[J]. Phys. Chem. Chem. Phys., 2016, 18(1): 164-175.
doi: 10.1039/c5cp05121e pmid: 26601903

[35] Zhang X, Kuroda D G. An Ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: a comparison between linear and cyclic carbonates[J]. J. Chem. Phys., 2019, 150(18): 184501.

[36] Tang Z K, Tse J S, Liu L M. Unusual Li-ion transfer mechanism in liquid electrolytes: a first-principles study[J]. J. Phys. Chem. Lett., 2016, 7(22): 4795-4801.

[37] Skarmoutsos I, Ponnuchamy V, Vetere V, Mossa S. Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes[J]. J. Phys. Chem. C, 2015, 119(9): 4502-4515.

[38] Vatamanu J, Borodin O, Smith G D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential[J]. J. Phys. Chem. C, 2011, 116(1): 1114-1121.

[39] Boyer M J, Vilciauskas L, Hwang G S. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study[J]. Phys. Chem. Chem. Phys., 2016, 18(40): 27868-27876.

[40] Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics, dynamics, and ion transport[J]. Phys. Chem. Chem. Phys., 2018, 20(45): 28649-28657.
doi: 10.1039/c8cp05190a pmid: 30406788

[41] Yao N, Chen X, Shen X, Zhang R, Fu Z H, Ma X X, Zhang X Q, Li B Q, Zhang Q. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes[J]. Angew. Chem. Int. Ed., 2021, 60(39): 21473-21478.

[42] Tenney C M, Cygan R T. Analysis of molecular clusters in simulations of lithium-ion battery electrolytes[J]. J. Phys. Chem. C, 2013, 117(47): 24673-24684.

[43] Liu H, Maginn E. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-N-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide[J]. J. Chem. Phys., 2011, 135(12): 124507.

[44] Fong K D, Self J, Diederichsen K M, Wood B M, McCloskey B D, Persson K A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries[J]. ACS Cent. Sci., 2019, 5(7): 1250-1260.

[45] Fong K D, Bergstrom H K, McCloskey B D, Mandadapu K K. Transport phenomena in electrolyte solutions: nonequilibrium thermodynamics and statistical mechanics[J]. AICHE J., 2020, 66(12): e17091.

[46] Fong K D, Self J, McCloskey B D, Persson K A. Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic liquids[J]. Macromolecules, 2020, 53(21): 9503-9512.

[47] Ringsby A J, Fong K D, Self J, Bergstrom H K, McCloskey B D, Persson K A. Transport phenomena in low temperature lithium-ion battery electrolytes[J]. J. Electro-chem. Soc., 2021, 168(8): 080501.

[48] Fong K D, Self J, McCloskey B D, Persson K A. Ion correlations and their impact on transport in polymer-based electrolytes[J]. Macromolecules, 2021, 54(6): 2575-2591.

[49] Spotte-Smith E W C, Kam R L, Barter D, Xie X, Hou T, Dwaraknath S, Blau S M, Persson K A. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(4): 1446-1453.

[50] Graetz J, Ahn C C, Yazami R, Fultz B. Highly reversible lithium storage in nanostructured silicon[J]. Electrochem. Solid-State Lett., 2003, 6(9): A194-A197.

[51] Schweidler S, de Biasi L, Schiele A, Hartmann P, Breze-sinski T, Janek J. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study[J]. J. Phys. Chem. C, 2018, 122(16): 8829-8835.

[52] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. J. Phys. Chem. C, 2014, 114(23): 11503-11618.

[53] Chen X, Shen X, Li B, Peng H J, Cheng X B, Li B Q, Zhang X Q, Huang J Q, Zhang Q. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode[J]. Angew. Chem. Int. Ed., 2018, 57(3): 734-737.
doi: 10.1002/anie.201711552 pmid: 29178154

[54] Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305.

[55] Nguyen C C, Lucht B L. Comparative study of fluoroe-thylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries[J]. J. Electrochem. Soc., 2014, 161(12): A1933-A1938.

[56] Philippe B, Dedryvere R, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study[J]. J. Am. Chem. Soc., 2013, 135(26): 9829-9842.
doi: 10.1021/ja403082s pmid: 23763546

[57] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.

[58] Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071.

[59] Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J. Am. Chem. Soc., 2013, 135(11): 4450-4456.
doi: 10.1021/ja312241y pmid: 23448508

[60] Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Adv. Funct. Mater., 2017, 27(10): 1605989.

[61] Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode[J]. Nat. Commun., 2015, 6: 6362.
doi: 10.1038/ncomms7362 pmid: 25698340

[62] Xia Y, Zheng J M, Wang C M, Gu M. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49: 434-452.

[63] Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(28): 8178-8182.

[64] Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Design principles for heteroatom-doped nano-carbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291.

[65] Rajput N N, Murugesan V, Shin Y, Han K S, Lau K C, Chen J, Liu J, Curtiss L A, Mueller K T, Persson K A. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions[J]. Chem. Mater., 2017, 29(8): 3375-3379.

[66] Borodin O, Self J, Persson K A, Wang C, Xu K. Uncharted waters: super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100.

[67] Shkrob I A, Wishart J F, Abraham D P. What makes fluoroethylene carbonate different?[J]. J. Phys. Chem. C, 2015, 119(27): 14954-14964.

[68] Xu C, Lindgren F, Philippe B, Gorgoi M, Björefors F, Edström K, Gustafsson T. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chem. Mater., 2015, 27(7): 2591-2599.

[69] Sina M, Alvarado J, Shobukawa H, Alexander C, Manich-ev V, Feldman L, Gustafsson T, Stevenson K J, Meng Y /S. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance[J]. Adv. Mater. Interfaces, 2016, 3(20): 1600438.

[70] Shi F, Ross P N, Somorjai G A, Komvopoulos K. The chemistry of electrolyte reduction on silicon electrodes revealed by in situ ATR-FTIR spectroscopy[J]. J. Phys. Chem. C, 2017, 121(27): 14476-14483.

[71] Schroder K W, Celio H, Webb L J, Stevenson K J. Examining solid electrolyte interphase formation on crystalline silicon electrodes: influence of electrochemical preparation and ambient exposure conditions[J]. J. Phys. Chem. C, 2012, 116(37): 19737-19747.

[72] Breitung B, Baumann P, Sommer H, Janek J, Brezesinski T. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale, 2016, 8(29): 14048-14056.
doi: 10.1039/c6nr03575b pmid: 27222212

[73] Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Adv. Energy Mater., 2016, 6(12): 1600099.

[74] Young B T, Heskett D R, Nguyen C C, Nie M, Woicik J C, Lucht B L. Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20004-20011.

[75] Jin Y, Kneusels N H, Magusin P, Kim G, Castillo-Martinez E, Marbella L E, Kerber R N, Howe D J, Paul S, Liu T, Grey C P. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J]. J. Am. Chem. Soc., 2017, 139(42): 14992-15004.
doi: 10.1021/jacs.7b06834 pmid: 28933161

[76] Schiele A, Breitung B, Hatsukade T, Berkes B B, Hartmann P, Janek J, Brezesinski T. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Lett., 2017, 2(10): 2228-2233.

[77] Zhang Y Y, Su M, Yu X F, Zhou Y F, Wang J G, Cao R G, Xu W, Wang C M, Baer D R, Borodin O, Xu K, Wang Y T, Wang X L, Xu Z J, Wang F Y, Zhu Z H. Investigation of ion-solvent interactions in nonaqueous electrolytes using in situ liquid SIMS[J]. Anal. Chem., 2018, 90(5): 3341-3348.

[78] Stetson C, Yoon T, Coyle J, Nemeth W, Young M, Norman A, Pylypenko S, Ban C, Jiang C S, Al-Jassim M, Burrell A. Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials[J]. Nano Energy, 2019, 55: 477-485.
doi: 10.1016/j.nanoen.2018.11.007

[79] Shobukawa H, Alvarado J, Yang Y, Meng Y S. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell[J]. J. Power Sources, 2017, 359: 173-181.

[80] He J, Wang H P, Zhou Q, Qi S H, Wu M G, Li F, Hu W, Ma J M. Unveiling the role of Li+ solvation structures with commercial carbonates in the formation of solid electrolyte interphase for lithium metal batteries[J]. Small Methods, 2021, 5(8): e2100441.

[81] Yamada Y, Yamada A. Review—superconcentrated ele-ctrolytes for lithium batteries[J]. J. Electrochem. Soc., 2015, 162(14): A2406-A2423.

[82] Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280.
doi: 10.1038/s41560-019-0336-z

[83] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.

[84] Borodin O, Suo L M, Gobet M, Ren X M, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding M S, Gobrogge E, Cresce A V, Munoz S, Dura J A, Greenbaum S, Wang C S, Xu K. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462-10471.
doi: 10.1021/acsnano.7b05664 pmid: 29016112

[85] Self J, Fong K D, Persson K A. Transport in superconcen-trated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Lett., 2019, 4(12): 2843-2849.

[86] Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries[J]. J. Electrochem. Soc., 2021, 168(1): 010522.

[87] Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.

[88] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem. Int. Ed., 2007, 46(41): 7778-7781.

[89] Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ion., 2016, 286: 24-33.

[90] Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y. Ionic conductivity of the lithium titanium phosphate?(Li1+xMXTi2-x(PO4)3, M = Al, Sc, Y, and La) systems[J]. J. Electrochem. Soc., 2019, 136(2): 590-591.

[91] Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Adv. Mater., 2017, 29(22): 1606042.

[92] Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2Co3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125.

[93] Qin K, Holguin K, Mohammadiroudbari M, Huang J, Kim E Y S, Hall R, Luo C. Strategies in structure and electrolyte design for high-performance lithium metal batteries[J]. Adv. Funct. Mater., 2021, 31(15): 2009694.

[94] Brissot C, Rosso M, Chazalviel J N, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells[J]. J. Power Sources, 1999, 81-82: 925-929.

[95] Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007, 40(13): 4578-4585.

[96] Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J P, Phan T N, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater., 2013, 12(5): 452-457.
doi: 10.1038/nmat3602 pmid: 23542871

[97] Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Adv. Mater., 2019, 31(4): 1805574.

[98] Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries[J]. J. Electrochem. Soc., 2012, 159(3): A222-A227.

[99] Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Adv. Mater., 2019, 31(12): 1807789.

[100] Cheng Q, Li A J, Li N, Li S, Zangiabadi A, Li T D, Huang W L, Li A C, Jin T W, Song Q Q, Xu W H, Ni N, Zhai H W, Dontigny M, Zaghib K, Chuan X Y, Su D, Yan K, Yang Y. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522.
doi: 10.1016/j.joule.2019.03.022

[101] Liu W, Liu N, Sun J, Hsu P C, Li Y, Lee H W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745.
doi: 10.1021/acs.nanolett.5b00600 pmid: 25782069

[102] Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J. Am. Chem. Soc., 2016, 138(30): 9385-9388.
doi: 10.1021/jacs.6b05341 pmid: 27440104

[103] Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. An anion-immoblized composite electrolyte for dendrite-free lithium metal anodes[J]. Proc. Natl. Acad. Sci. U.S.A, 2017, 114(42): 11069-11074.
doi: 10.1073/pnas.1708489114 pmid: 28973945

[104] Judez X, Martinez-Ibañez M, Santiago A, Armand M, Zhang H, Li C M. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives[J]. J. Power Sources, 2019, 438: 226985.

[105] Xu W, Pei X, Diercks C S, Lyu H, Ji Z, Yaghi O M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte[J]. J. Am. Chem. Soc., 2019, 141(44): 17522-17526.
doi: 10.1021/jacs.9b10418 pmid: 31642665

[106] Cronau M, Szabo M, König C, Wassermann T B, Roling B. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes[J]. ACS Energy Lett., 2021, 6(9): 3072-3077.

[107] Winand J M, Depireux J. Measurement of ionic conductivity in solid electrolytes[J]. Europhys. Lett., 1989, 8(5): 447-452.

[108] Hou T, Xu W, Pei X, Jiang L, Yaghi O M, Persson K A. Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes[J]. J. Am. Chem. Soc., 2022, 144(30): 13446-13450.
doi: 10.1021/jacs.2c03710 pmid: 35700972

[109] Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
doi: 10.1021/acsnano.8b05038 pmid: 30226745

[110] Nanda J, Yang G, Hou T, Voylov D N, Li X, Ruther R E, Naguib M, Persson K, Veith G M, Sokolov A P. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy[J]. Joule, 2019, 3(8): 2001-2019.

[111] Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes[J]. Acc. Chem. Res., 2020, 53(9): 1992-2002.

[112] Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chem. Rev., 2022, 122(12): 10970-11021.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.