Corresponding Author

Bing-Wen Hu(bwhu@phy.ecnu.edu.cn)


Metal-ion batteries have changed our quotidian lives. The research on the electrode materials for metal-ion battery is the key to improve the performance of the battery. Therefore, understanding the structure-performance relationship of the electrode materials can help to improve the energy density and power density of the materials. Magnetic resonance, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), has been continuously improved during the past three decades, and has gradually become one of the important technologies to study the structure-performance relationship of electrode materials. This paper summarizes the progress of magnetic resonance research from our group on several interesting electrode materials and demonstrates the important role of NMR and EPR in the study of electrode materials. This article will help to grasp the important value of magnetic resonance technology for battery research, which will promote the further development of advance magnetic resonance technology.

Graphical Abstract


solid-state NMR, EPR, batteries, cathode materials

Publication Date


Online Available Date


Revised Date


Received Date



[1] Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries[J]. Nat. Rev. Mater., 2018, 3(4):18013.
doi: 10.1038/natrevmats.2018.13 URL

[2] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chem. Soc. Rev., 2017, 46(12):3529-3614.
doi: 10.1039/C6CS00776G URL

[3] Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Routes to high energy cathodes of sodium-ion batteries[J]. Adv. Energy Mater., 2016, 6(5):1501727.
doi: 10.1002/aenm.201501727 URL

[4] Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4):16013.
doi: 10.1038/natrevmats.2016.13 URL

[5] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23):11636-11682.
doi: 10.1021/cr500192f pmid: 25390643

[6] Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2017, 16(1):45-56.
doi: 10.1038/nmat4777 URL

[7] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015, 7(1):19-29.
doi: 10.1038/nchem.2085 pmid: 25515886

[8] Goodenough J B. Evolution of strategies for modern rech-argeable batteries[J]. Acc. Chem. Res., 2013, 46(5):1053-1061.
doi: 10.1021/ar2002705 URL

[9] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3):587-603.
doi: 10.1021/cm901452z URL

[10] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011, 4(9):3243-3262.
doi: 10.1039/c1ee01598b URL

[11] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
doi: 10.1038/451652a URL

[12] Liu D Q, Shadike Z, Lin R Q, Qian K, Li H, Li K K, Wang S W, Yu Q P, Liu M, Ganapathy S, Qin X Y, Yang Q H, Wagemaker M, Kang F Y, Yang X Q, Li B H. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Adv. Mater., 2019, 31(28):1806620.
doi: 10.1002/adma.v31.28 URL

[13] Pecher O, Carretero-González J, Griffith K J, Grey C P. Materials’ methods: NMR in battery research[J]. Chem. Mater., 2017, 29(1):213-242.
doi: 10.1021/acs.chemmater.6b03183 URL

[14] Nguyen H, Clément R J. Rechargeable batteries from the perspective of the electron spin[J]. ACS Energy Lett., 2020, 5(12):3848-3859.
doi: 10.1021/acsenergylett.0c02074 URL

[15] Ilott A J, Mohammadi M, Schauerman C M, Ganter M J, Jerschow A. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging[J]. Nat. Commun., 2018, 9(1):1776.
doi: 10.1038/s41467-018-04192-x URL

[16] Sathiya M, Leriche J B, Salager E, Gourier D, Tarascon J M, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries[J]. Nat. Commun., 2015, 6(1):6276.
doi: 10.1038/ncomms7276 URL

[17] Geng F S, Shen M, Hu B, Liu Y F, Zeng L C, Hu B W. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ17O NMR[J]. Chem. Commun., 2019, 55(52):7550-7553.
doi: 10.1039/C9CC03304A URL

[18] Freytag A I, Pauric A D, Krachkovskiy S A, Goward G R. In situ magic-angle spinning7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design[J]. J. Am. Chem. Soc., 2019, 141(35):13758-13761.
doi: 10.1021/jacs.9b06885 pmid: 31429559

[19] Shimoda K, Murakami M, Takamatsu D, Arai H, Uchimoto Y, Ogumi Z. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode[J]. Electro-chim. Acta, 2013, 108:343-349.
doi: 10.1016/j.electacta.2013.06.120 URL

[20] Hu B, Lou X B, Li C, Geng F S, Zhao C, Wang J Y, Shen M, Hu B W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode[J]. J. Power Sources, 2019, 438:226954.
doi: 10.1016/j.jpowsour.2019.226954 URL

[21] Geng F S, Yang Q, Li C, Hu B, Zhao C, Shen M, Hu B W. Operando EPR and EPR imaging study on a NaCrO2 cathode: Electronic property and structural degradation with Cr dissolution[J]. J. Phys. Chem. Lett., 2021, 12(2):781-786.
doi: 10.1021/acs.jpclett.0c03327 URL

[22] Liao Y X, Li C, Lou X B, Hu X S, Ning Y Q, Yuan F Y, Chen B, Shen M, Hu B W. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability[J]. Electrochim. Acta, 2018, 271:608-616.
doi: 10.1016/j.electacta.2018.03.100 URL

[23] Yin S C, Grondey H, Strobel P, Huang H, Nazar L F. Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries[J]. J. Am. Chem. Soc., 2003, 125(2):326-327.
doi: 10.1021/ja028973h URL

[24] Li C, Lou X B, Shen M, Hu X S, Yan W S, Zou Y, Tong W M, Hu B W. High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins[J]. Energy Storage Mater., 2017, 7:195-202.

[25] Li C, Yang Q, Shen M, Ma J Y, Hu B W. The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy[J]. Energy Storage Mater., 2018, 14:82-89.

[26] Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS Appl. Mater. Interfaces, 2017, 9(35):29829-19838.
doi: 10.1021/acsami.7b09363 URL

[27] Li C, Lou X B, Yang Q, Zou Y M, Hu B W. Remarkable improvement in the lithium storage property of CO2(OH)2 BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins[J]. Chem. Eng. J., 2017, 326:1000-1008.
doi: 10.1016/j.cej.2017.06.048 URL

[28] Li C, Shen M, Hu B, Lou X B, Zhang X, Tong W, Hu B W. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry[J]. J. Mater. Chem. A, 2018, 6(18):8340-8348.
doi: 10.1039/C8TA00568K URL

[29] Li C, Shen M, Lou X B, Hu B W. Unraveling the redox couples of V-III/V-IV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/ex situ NMR[J]. J. Phys. Chem. C, 2018, 122(48):27224-27232.
doi: 10.1021/acs.jpcc.8b09151 URL

[30] Park Y U, Seo D H, Kim B, Hong K P, Kim H, Lee S, Shakoor R A, Miyasaka K, Tarascon J M, Kang K. Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries[J]. Sci. Rep., 2012, 2:704.
doi: 10.1038/srep00704 URL

[31] Qiu Q, Li C, Liu H, Liao Y X, Zhao C, Geng F S, Shen M, Li J X, Tong W, Hu B W. NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution[J]. J. Phys. Chem. C, 2021, 125(28):15200-15209.
doi: 10.1021/acs.jpcc.1c04099 URL

[32] Li C, Zhao C, Hu B, Tong W, Shen M, Hu B W. Unraveling the critical role of Ti substitution in P2-NaxLiyMn1-yO2 cathodes for highly reversible oxygen redox chemistry[J]. Chem. Mater., 2020, 32(3):1054-1063.
doi: 10.1021/acs.chemmater.9b03765 URL

[33] Zhao C, Li C, Yang Q, Qiu Q, Tong W, Zheng S, Ma J Y, Shen M, Hu B W. Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR[J]. Energy Storage Mater., 2021, 39:60-69.

[34] Geng F S, Hu B, Li C, Zhao C, Lafon O, Trébosc J, Am-oureux J P, Shen M, Hu B W. Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR[J]. J. Mater. Chem. A, 2020, 8(32):16515-16526.
doi: 10.1039/D0TA03358H URL

[35] Li C, Shen M, Hu B W. Solid-state NMR and EPR methods for metal ion battery research[J]. Acta Phys.-Chim. Sin., 2020, 36(4): UNSP 1902019.

[36] Liu Y F, Zeng L C, Xu C C, Geng F S, Shen M, Yuan Q H, Hu B W. Optimizing the Ueff value for DFT+U calculation of paramagnetic solid-state NMR shifts by double Fermi-contact-shift verification[J]. Chem. Phys. Lett., 2019, 736:136779.
doi: 10.1016/j.cplett.2019.136779 URL

[37] Pigliapochi R, Pell A J, Seymour I D, Grey C P, Ceresoli D, Kaupp M. DFT investigation of the effect of spin-orbit coupling on the NMR shifts in paramagnetic solids[J]. Phys. Rev. B, 2017, 95:054412
doi: 10.1103/PhysRevB.95.054412 URL

[38] Hrobárik P, Reviakine R, Arbuznikov A V, Malkina O L, Malkin V G, Köhler F H, Kaupp M. Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: Validation on 3d metallocenes[J]. J. Chem. Phys., 2007, 126:024107.
doi: 10.1063/1.2423003 URL

[39] Pigliapochi R, Seymour I D, Merlet C, Pell A J, Murphy D T, Schmid S, Grey C P. Structural characterization of the Li-ion battery cathode materials LiTixMn2-xO4 (0.2 ≤ x ≤ 1.5): A combined experimental7Li NMR and first-principles study[J]. Chem. Mater., 2018, 30(3):817-829.
doi: 10.1021/acs.chemmater.7b04314 URL

[40] Middlemiss D S, Ilott A J, Clément R l J, Strobridge F C, Grey C P. Density functional theory-based bond pathway decompositions of hyperfine shifts: Equipping solid-state NMR to characterize atomic environments in paramagnetic materials[J]. Chem. Mater., 2013, 25:1723-1734.
doi: 10.1021/cm400201t URL

[41] Castets A, Carlier D, Zhang Y, Boucher F, Ménétrier M. A DFT-based analysis of the NMR fermi contact shifts in tavoritelike LiMPO4·OH and MPO4·H2O (M = Fe, Mn, V)[J]. J. Phys. Chem. C, 2012, 116:18002-16014.
doi: 10.1021/jp302549s URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.