Corresponding Author

Si-Min Lu(simin_lu@nju.edu.cn);
Yi-Tao Long(ytlong@ecust.edu.cn)


Light irradiation on silver nanoparticles (Ag NPs) could cause the energy conversion, thus, the fragmentation of Ag NPs. It is important to detect the changes of fragmented Ag NPs in the aspects of physical and chemical properties. Herein, benefiting from the high sensitivity, high temporal resolution, and high-throughput, single entity electrochemistry (SEE) method is introduced to in-situ track the dynamic laser fragmentation of single Ag NP. Compared with UV-Vis absorption spectroscopy and transmission electron microscopy (TEM), SEE methods enables an accurate in-situ measurements of light-induced fragmentation of single Ag NP. The variation in the statistic current amplitude displays the real-time changes of single Ag NP upon laser irradiation for 60 min, which indicates that the laser of 532 nm wavelength is the most effective laser for the dynamic fragmentation. By virtue of the excellent sensing performance, SEE is further applied in revealing the heterogeneity in Ag NPs’ intrinsic physicochemical properties, such as size, crystal structure, surface charge density. The study highlights the potential of SEE to advancing the real-time characterization of nanomaterials in the chemical reactions.

Graphical Abstract


light-induced fragmentation, single entity electrochemistry, stochastic collision electrochemistry, single silver nanoparticles

Publication Date


Online Available Date


Revised Date


Received Date



[1] Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discuss., 2016, 193:9-39.
doi: 10.1039/C6FD00180G URL

[2] Crooks R M. Concluding remarks: single entity electrochemistry one step at a time[J]. Faraday Discuss., 2016, 193:533-547.
doi: 10.1039/C6FD00203J URL

[3] Baker L A. Perspective and prospectus on single-entity electrochemistry[J]. J. Am. Chem. Soc., 2018, 140(46):15549-15559.
doi: 10.1021/jacs.8b09747 pmid: 30388887

[4] Gooding J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958.
doi: 10.1002/anie.201606459 pmid: 27531025

[5] Lu S M, Peng Y Y, Ying Y L, Long Y T. Electrochemical sensing at a confined space[J]. Anal. Chem., 2020, 92(8):5621-5644.
doi: 10.1021/acs.analchem.0c00931 URL

[6] Kwon S J, Zhou H J, Fan F R F, Vorobyev V, Zhang B, Bard A J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments[J]. Phys. Chem. Chem. Phys., 2011, 13(12):5394-5402.
doi: 10.1039/c0cp02543g URL

[7] Ren H, Edwards M A. Stochasticity in single-entity electrochemistry[J]. Curr. Opin. Electrochem., 2021, 25:100632.

[8] Ma W, Ma H, Chen J F, Peng Y Y, Yang Z Y, Wang H F, Ying. Y L, Tian H, Long Y T. Tracking motion trajectories of individual nanoparticles using time-resolved current traces[J]. Chem. Sci., 2017, 8(3):1854-1861.
doi: 10.1039/C6SC04582K URL

[9] Ustarroz J, Kang M, Bullions E, Unwin P R. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events[J]. Chem. Sci., 2017, 8(3):1841-1853.
doi: 10.1039/c6sc04483b pmid: 28553474

[10] Robinson D A, Liu Y W, Edwards M A, Vitti N J, Oja S M, Zhang B, White H S. Collision dynamics during the electrooxidation of individual silver nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(46):16923-16931.
doi: 10.1021/jacs.7b09842 pmid: 29083174

[11] Peng Y Y, Ma H, Ma W, Long Y T, Tian H. Single-nano-particle photoelectrochemistry at a nanoparticulate TiO2-filmed ultramicroelectrode[J]. Angew. Chem. Int. Ed., 2018, 57(14):3758-3762.
doi: 10.1002/anie.201710568 URL

[12] Ma H, Ma W, Chen J F, Liu X Y, Peng Y Y, Yang Z Y, Tian H, Long Y T. Quantifying visible-light-induced ele-ctron transfer properties of single dye-sensitized ZnO entity for water splitting[J]. J. Am. Chem. Soc., 2018, 140(15):5272-5279.
doi: 10.1021/jacs.8b01623 URL

[13] Zhang J H, Zhou Y G. Single particle impact electrochemistry: analyses of nanoparticles and biomolecules[J]. J. Electrochem., 2019, 25(3):374-385.

[14] Sun L L, Wang W, Chen H Y. Correlated optical imaging and electrochemical recording for studying single nano-particle collsisons[J]. J. Electrochem., 2019, 25(3):386-399.

[15] Wang W, Su B F, Zhan D P. Preparation and charagterization of prussian blue modified nanoelectrode[J]. J. Ele-ctrochem., 2012, 18(3):252-256.

[16] Dick J E, Hilterbrand A T, Strawsine L M, Upton J W, Bard A J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses[J]. Proc. Natl. Acad. Sci., 2016, 113(23):6403-6408.
doi: 10.1073/pnas.1605002113 URL

[17] Xiang Z P, Deng H Q, Peljo P, Fu Z Y, Wang S L, Mandler D, Sun G Q, Liang Z X. Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(13):3464-3468.
doi: 10.1002/anie.201712454 URL

[18] Tsuji T, Hashimoto S. Laser-induced fragmentation of colloidal nanoparticles[M]// Sugioka K (Editor). Handbook of laser micro- and nano-engineering. Spring, Cham. 2021: 1-20.

[19] Hajiesmaeilbaigi F, Mohammadalipour A, Sabbaghzadeh J, Hoseinkhani S, Fallah H R. Preparation of silver nanoparticles by laser ablation and fragmentation in pure water[J]. Laser Phys. Lett., 2006, 3(5):252-256.
doi: 10.1002/lapl.200510082 URL

[20] Hamad A H. Nanosecond laser generation of silver nano-particles in ice water[J]. Chem. Phys. Lett., 2020, 755(16):137782.
doi: 10.1016/j.cplett.2020.137782 URL

[21] Mika A P, Rousseau P, Domaracka A, Huber B A. Interaction of multiply charged ions with large free silver nanoparticles: multielectron capture, fragmentation, and sputtering phenomena[J]. Phys. Rev. B, 2019, 100(7):075439-1-7.
doi: 10.1103/PhysRevB.100.075439 URL

[22] Yu R J, Xu S W, Paul S, Ying Y L, Cui L F, Daiguji H, Hsu W L, Long Y T. Nanoconfined electrochemical sensing of single silver nanoparticles with a wireless nanopore electrode[J]. ACS Sens, 2021, 6(2):335-339.
doi: 10.1021/acssensors.0c02327 URL

[23] Lu S M, Chen J F, Peng Y Y, Ma W, Ma H, Wang H F, Hu P J, Long Y T. Understanding the dynamic potential distribution at the electrode interface by stochastic collision electrochemistry[J]. J. Am. Chem. Soc., 2021, 143(32):12428-12432.
doi: 10.1021/jacs.1c02588 URL

[24] Ma W, Ma H, Yang Z Y, Long Y T. Single Ag nanoparticle electro-oxidation: potential-dependent current traces and potential-independence electron transfer kinetic[J]. J. Phys. Chem. Lett., 2018, 9(6):1429-1433.
doi: 10.1021/acs.jpclett.8b00386 URL

[25] Kim J Y, Han D, Crouch G M, Kwon S R, Bohn P W. Capture of single silver nanoparticles in nanopore arrays detected by simulations amperometry and surface-enhanced raman scattering[J]. Anal. Chem., 2019, 91(7):4568-4576.
doi: 10.1021/acs.analchem.8b05748 URL

[26] Li X T, Batchelor-McAuley C, Compton R G. Silver nano-particle detection in real-word environments via particle impact electrochemistry[J]. ACS Sens, 2019, 4(2):464-470.
doi: 10.1021/acssensors.8b01482 URL

[27] Ma H, Chen J F, Wang H F, Hu P J, Ma W, Long Y T. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement[J]. Nat. Commun., 2020, 11:2307.
doi: 10.1038/s41467-020-16149-0 URL

[28] Kamat P V, Flumiani M, Hartland G V. Picosecond dynamics of silver nanoclusters. photoejection of electrons and fragmentation[J]. J. Phys. Chem. B, 1998, 102(17):3123-3128.
doi: 10.1021/jp980009b URL

[29] Eustis S, Krylova G, Eremenko A, Smirnova N, Schill A W, El-Sayed M. Growth and fragmentation of silver nanoparticles in their synjournal with a fs laser and CW light by photo-sensitization with benzophenone[J]. Photo-chem. Photobiol. Sci., 2005, 4(1):154-159.

[30] Jin R C, Cao Y C, Hao E, Metranux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425(6957):487-490.
doi: 10.1038/nature02020 URL

[31] Mohanty J, Palit D K, Shastri L V, Sapre A V. Plused laser excitation of phosphate stabilised silver nanoparticles[J]. J. Chem. Sci., 2000, 112(1) 63-72.
doi: 10.1007/BF02704301 URL

[32] Park J H, Boika A, Park H S, Lee H C, Bard A J. Single collision events of conductive nanoparticles driven by migration[J]. J. Phys. Chem. C, 2013, 117(13):6651-6657.
doi: 10.1021/jp3126494 URL

[33] Ellison J, Batchelor-McAuley C, Tschulik K, Compton R G. The use cylindrical micro-wire electrodes for nano-im-pact experiments: facilitating the sub-picomolar detection of single nanoparticles[J]. Sens. Actuators B Chem., 2014, 200:47-52.
doi: 10.1016/j.snb.2014.03.085 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.